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Abstract

Turnover of regulatory sequence and function is an important part of molecular evolution. But what are the modes of
sequence evolution leading to rapid formation and loss of regulatory sites? Here we show that a large fraction of
neighboring transcription factor binding sites in the fly genome have formed from a common sequence origin by local
duplications. This mode of evolution is found to produce regulatory information: duplications can seed new sites in the
neighborhood of existing sites. Duplicate seeds evolve subsequently by point mutations, often towards binding a different
factor than their ancestral neighbor sites. These results are based on a statistical analysis of 346 cis-regulatory modules in
the Drosophila melanogaster genome, and a comparison set of intergenic regulatory sequence in Saccharomyces cerevisiae.
In fly regulatory modules, pairs of binding sites show significantly enhanced sequence similarity up to distances of about 50
bp. We analyze these data in terms of an evolutionary model with two distinct modes of site formation: (i) evolution from
independent sequence origin and (ii) divergent evolution following duplication of a common ancestor sequence. Our
results suggest that pervasive formation of binding sites by local sequence duplications distinguishes the complex
regulatory architecture of higher eukaryotes from the simpler architecture of unicellular organisms.
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Introduction

The importance of regulatory variations as a driving force for

phenotypic evolution has been suggested some time ago [1,2].

However, a quantitative understanding of gene regulation has

become possible only after the advent of large-scale genomic

sequence and regulatory interaction data. Important building

blocks are genome-wide maps of protein-DNA binding, statistical

inference methods [3,4], high-throughput measurements of

sequence-specific binding affinities of transcription factors [5–8],

and cross-species comparisons of regulatory sequences and

regulatory functions [9].

The resulting picture is quite diverse: Core parts of develop-

mental regulatory networks can be conserved over large

evolutionary ranges [10], and individual promoters in flies are

found to be conserved in function over large evolutionary distances

[11,12]. Functional changes in promoters have been identified as

well, but the relative roles of adaptive and near-neutral evolution

remain to be clarified. The sequences in regulatory DNA regions

evolve under less constraint than their functional output. This

feature can be explained by wide-spread compensatory changes,

which have been identified between different nucleotides within

individual binding sites as well as between different sites within a

promoter [11–17]. At the promoter level, this dynamics includes

loss and gain of binding sites, the rates of which have been

estimated in flies and yeast [13,18,19]. The observed site turnover

is consistent with moderate negative selection acting on individual

sites [13,20], whereas the function of entire promoters is under

stronger stabilizing selection [11].

The evolutionary constraint of regulatory sequence and

function depends on the level of complexity in promoter

architecture. Prokaryotes and unicellular eukaryotes have short

intergenic regions, and regulatory functions are often encoded by

few binding sites. The more complex cis-regulatory information in

higher eukaryotes is organized into regulatory modules, which are

typically a few hundred base pairs long and are spatially separated

by larger segments of intergenic DNA [21,22]. Within modules,

regulatory functions often depend on clusters of neighboring

binding sites for multiple transcription factors, which are coupled

by cooperative interaction [23–27]. Bioinformatic algorithms trace

such site clusters to identify regulatory DNA regions [28–34]. The

relative order and spacing of sites within clusters follows a

regulatory ‘‘grammar’’, which distinguishes functionally neutral

site changes from rearrangements affecting promoter function

[17,35–39]. The combinatorial complexity of this grammar

ensures the specificity of regulation in the larger genomes of

multicellular eukaryotes [40,41]. At the same time, the grammar is

flexible enough to allow substantial sequence evolution in a

regulatory module while maintaining its overall functional output.

In addition to point mutations, sequence insertions and

deletions (indels) play a significant role in this dynamics. Several

studies have noted the prevalence of repetitive sequence elements

in promoter regions and their potential influence on regulatory

function [42–49]. In particular, a recent detailed analysis of the

evolutionary rates of short tandem repeats in Drosophila has shown

a net surplus of insertions, suggesting that these repeats may

produce new regulatory sequence [48]. But to what extent is this

actually the case? A priori, the link between repeat evolution and
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regulation is far from obvious: Duplications in repeats can either

be part of the neutral background evolution in regulatory

sequences, or increase the spacing between existing binding sites

of a regulatory module, or contribute to the formation of new sites.

Disentangling these roles is subtle, because detected tandem

repeats in contemporary sequence overlap with only a small

fraction of binding sites, motif size and total length of most repeats

are shorter than length and spacing of typical binding sites in a

cluster, and repeat lifetimes are much shorter than conservation

times of regulatory elements [49]. Hence, the role of repeat

dynamics for regulation is an open problem: Do local duplications

actually transport and produce regulatory information?

This is the topic of the present paper. We show that local

duplications have left a striking signature in the fly genome: the

majority of transcription factor binding sites in regulatory modules

show evidence of a duplication event in their evolutionary history.

We conclude that over long evolutionary times, local duplications

are pervasive and crucial for the formation of complex regulatory

modules in the fly genome. This mode of evolution sets the speed of

regulatory evolution and facilitates adaptive changes of promoter

function. We infer site duplications from their traces in the sequence

of neighboring binding sites, but most duplication events predate

the tandem repeats present in contemporary sequence. This

distinguishes our study from comparative analysis of regulatory

sequence between closely related species [45–49], which can detect

the insertion-deletion dynamics of contemporary repeats, but cover

only a small window in the evolution of regulatory sites.

The importance of binding site evolution by duplication is

grounded in the biophysics of transcription factor-DNA interac-

tions: the sequence-dependent probability of binding between factor

and site depends in a strongly nonlinear way on the binding energy

[3]: it takes values close to 1 in an energy range below the maximum

binding energy, then drops rapidly as the energy decreases further,

and is close to 0 in the energy range of non-binding sites. This

nonlinearity generates strong epistatic effects for point mutations

within binding sites [13,50] and, in turn, an asymmetry in the

turnover of binding sites. Functional sites can rapidly lose their

binding affinity to a factor by one or two point mutations. Rapid

adaptive formation of a site, however, requires a seed sequence with

marginal binding, to which positive selection for point mutations

towards stronger binding can latch on. Such seeds are contained in

random sequence, but at unspecific positions. Estimates of the rate

of site formation based on biophysically grounded fitness models

suggest that point mutations alone can explain the rapid formation

of an individual site in a sufficiently large sequence interval, but not

the formation of spatially confined agglomerations of sites

characteristic of regulatory modules [50–52]. As we show in this

paper, local sequence duplications generate seeds for new sites

specifically in the neighborhood of functional sites.

Our analysis proceeds in three steps. First, we analyze local

sequence similarities in regulatory regions of the Drosophila

melanogaster genome in a model-independent way. In regulatory

modules, we find a significant autocorrelation in nucleotide

content for distances up to about 70 bp. This autocorrelation

includes the known contributions of tandem repeat sequences, but

it extends to a much larger distance range. The signal turns out to

be generated by local sequence clusters, a substantial fraction of

which are functional transcription factor binding sites with similar

sequence motifs. In the second part of the paper, we turn

specifically to binding sites: we infer the evolutionary origin for

pairs of neighboring sites, using a known set of validated sites and a

probabilistic model with mutations, genetic drift, and selection.

The model compares the likelihood of two alternative histories: a

pair of sites evolves either independently or by duplication from a

common ancestor sequence. The duplication is followed by

diversification under selection for binding of two (in general

different) factors. We show that the duplication pathway is the

most likely history for pairs of sites with a mutual distance up to

about 50 bp. Furthermore, we find evidence that this pathway is

specific to regulatory modules of multicellular eukaryotes. Finally,

we show that the duplication mode has adaptive potential:

duplicated ancestor sites can act as seeds for the subsequent

formation of a novel binding site for the same factor and, notably,

even for a different factor.

Results

Sequence autocorrelation in regulatory DNA
The most straightforward measure of local similarity in a

sequence segment is the autocorrelation function, which is defined as

the difference between the likelihood c(r) that two nucleotides at a

distance of r base pairs are identical and mean identity c0 of two

random nucleotides, D(r)~c(r){c0. This function is straightfor-

ward to evaluate from sequence data as given by eq. (2) in

Materials and Methods. We have obtained the autocorrelation

function in 346 regulatory modules of the D. melanogaster genome

with length of more than 1000 bp identified by REDfly database

[53–55]. The results are shown in Fig. 1 (a). In the distance range

up to about 70 bp, the function D(r) takes positive values that

decay with r in a roughly exponential way; this signal is clearly

above the noise level. The mean identity is evaluated in a local

window of 500 bp (changing the window length affects the baseline

of this function, but not its short-distance behavior). The

autocorrelation signal is small and has several potential sources,

such as multiple binding sites for similar motifs, microsatellite and

minisatellite repeats at short length scales [46–49], homopolymeric

stretches of nucleotides characteristic of nucleosome-depleted

regions [56], or other local inhomogeneities in sequence

composition. As a next step, we will characterize local sequence

similarity in a more specific way: we will show that mutually

Author Summary

Since Jacob and Monod stressed the importance of gene
regulation in evolution, our understanding of the mech-
anisms of regulation has substantially advanced. In higher
eukaryotes, genes often have complex regulatory input,
which is encoded in cis-regulatory sequence with multiple
transcription factor binding sites. However, the modes of
genome evolution generating regulatory complexity are
much less understood. This study reports a surprising
finding: in fly regulatory modules, the majority of
transcription factor binding sites show evidence of a local
sequence duplication in their evolutionary history, which
relates their sequence information to that of neighboring
binding sites. Our analysis suggests that local sequence
duplications are a pervasive production mode of regula-
tory information. This mode appears to be specific to
higher eukaryotes; we have not found evidence of
frequent local duplications in the yeast genome. Our
results affect genomic sequence analysis, in particular,
computational identification of cis-regulatory elements
and alignment of regulatory DNA. At the same time, they
address fundamental questions on the evolution of
regulation: How much of the regulatory ‘‘grammar’’
observed in higher eukaryotes is due to optimization of
function, and how much reflects the underlying sequence
evolution modes? What is the result and what is the
substrate of natural selection?

Regulatory Sequence Evolution by Local Duplication
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correlated nucleotide pairs are not evenly distributed over

regulatory modules, but occur in local clusters with a characteristic

length scale of around 7 bp. This signal will be analyzed from an

evolutionary point of view and be linked to cis-regulatory function.

Sequence motifs and information
To motivate the following analysis, assume that a given

sequence segment is covered by families of sites belonging to

different motifs. By definition, a motif is a probability distribution

Q(a) of genotypes a~(a1, . . . ,a‘), which describes a specific set of

sequence sites with ‘ consecutive base pairs and is different from

the background distribution P0(a). The statistical deviation of a

motif from background is measured by the relative entropy

between these distributions, H(QjP0), which is given by eq. (4) in

Materials and Methods. This quantity determines the average

sequence information per site, which is often quoted in units of bits [4].

Multiplying H(QjP0) with the number of sites for each motif and

summing over all motifs produces a measure of the total sequence

information contained in a genomic region.

Well-known motifs in regulatory DNA are the families of binding

sites for a given transcription factor. In eukaryotic systems, these

sites have a typical length of about 5–10 bp and frequency

distributions Q (called position weight matrices) with a typical

information content H&6{8 bits per site; see the recent discussion

by [57]. Other motifs can be defined, for example, in nucleosome-

depleted sequences in eukaryotes and for repeat units in tandem

repeats. If all motifs occurring in a given sequence segment were

known, we could try to predict their sites and evaluate the

information content directly. In the present part of the analysis, we

proceed differently. We only assume that sequence motifs carry a

certain information content over sites of a given length ‘, but we

make no further assumptions on position weight matrices, sequence

coverage, or evolutionary origin. We can still recover part of this

sequence information from those motifs that occur more than once

in the sequence segment. A pair of sites of length ‘ belonging to the

same motif has an average similarity information given by the mutual

entropy K(c,‘jc0), which measures the enhanced similarity c of

aligned nucleotides of the site sequences compared to the

background similarity c0 and is given by eq. (5) in Materials and

Methods. Clearly, the similarity information between pairs of sites is

a somewhat diluted measure of the full information content due to

motifs. As a rule of thumb, the mutual entropy per site pair,

K(c,‘jc0), recovers about half of the sequence information per site,

H(QjP0). For example, binding sites for the same transcription

factor are strongly correlated, with a typical similarity c&0:7 and a

similarity information K&3 bits per site pair.

Here, we want to identify pairs of similar sites at a given

distance r and relate them to the sequence autocorrelation

function D(r) discussed above. Thus, we estimate the total

similarity information K‘(r) per unit sequence length of all

strongly correlated pairs of sites with distance r and length ‘ in

regulatory modules. This quantity can be defined by constructing

a set of site pairs for given r and ‘ with the following properties: (i)

Any pair of sites has an average mutual similarity between aligned

nucleotides above a certain threshold, cwcmin(‘). (ii) The left sites

(and, hence, also the right sites) of all pairs have no mutual

overlaps. This condition is necessary in order to avoid overcount-

ing of mutual similarity in overlapping site pairs. (iii) The sum of

the mutual similarities of all pairs in the set is maximal (see Fig. 4

for illustration). This condition is also used to set the similarity

threshold cmin(‘). To identify a set of site pairs with properties (i) to

(iii), we use a dynamic programming algorithm as explained in

Materials and Methods. This method allows for optimization of

sequence length ‘ similar to the procedure in local sequence

alignment algorithms [58]. In the maximum-similarity set, we

record the average mutual similarity �cc(r,‘) of aligned nucleotides

in site pairs, which determines the mean information content per

site pair, K(�cc(r,‘),‘jc0) (see eq. (5) in Materials and Methods). We

also record the number n(r,‘) of site pairs and determine the

excess Dn(r,‘)~n(r,‘){n0(‘) over the number expected by

chance in background sequence, n0(‘) (see Materials and

Methods). The distance-dependent total similarity information

per unit length in a sequence segment of size L can then be

estimated as K‘(r)~(Dn(r,‘)=L)K(�cc(r,‘),‘jc0).

Our inference of K‘(r) is related to recent methods for

prediction of unknown regulatory modules based on their

enhanced sequence similarity contained in words of length ‘
[32–34]. But the evaluation of sequence similarity and the goals of

the analysis differ: module prediction uses the total similarity in a

genomic region, which in our setup is given by summation of K‘(r)
over all distances r and over different word lengths ‘. Our analysis

is limited to known regulatory modules and focuses on the

dependence of K‘(r) on r and ‘. A specific part of this signal,

obtained from sites with distance r below 50 bp, will be associated

below with local duplications as prevalent evolutionary mode.

Similarity information in regulatory modules of
Drosophila

We evaluate the similarity information in the set of 346

regulatory modules of Drosophila melanogaster and in surrounding

Figure 1. Sequence similarity in regulatory modules of the fly
genome. (a) Sequence autocorrelation D(r) as a function of distance r,
obtained from 346 regulatory modules in D. melanogaster (gray:
unbinned data, blue: binned in intervals of variable length). The
autocorrelation values are positive and depend on r in a roughly
exponential way up to about 70 bp. (b) Total similarity information
Ktot(‘)~

P100
r~1 K‘(r) as a function of motif length ‘ for all pairs of

strongly correlated sites with mutual distance rv100 bp in the same set
of regulatory modules. This function takes its maximum at a
characteristic motif length of ‘~7 bp. (c) Distance-dependent similarity
information K7(r) for motif length ‘~7 evaluated in all sequence (red),
binding site-masked sequence (green), repeat-masked sequence (blue)
in regulatory modules, and in generic intergenic sequence (black).
Repeat-masked sequence is generated using the Tandem Repeat Finder
[59] with match-mismatch-indel penalty parameters (2,3,5). Insert: Total
similarity information Ktot(‘~7) for the same sequence categories.
Binding sites, but not tandem repeats, account for a substantial fraction
of the similarity information.
doi:10.1371/journal.pcbi.1002167.g001

Regulatory Sequence Evolution by Local Duplication
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background sequence. The following features of local sequence

similarity can be extracted:

– The total information of local sequence similarity is maximal for motifs of

length ‘~7. Fig. 1(b) shows the total similarity information of all

detected site pairs in the range of up to 100 bp,

Ktot(‘)~
P100

r~‘ K‘(r), as a function of the site length ‘. The

function Ktot(‘) takes its maximum, that is, the similarity

information is most significant, for ‘~7. The signal falls off at

shorter length scales, because typical motif sequences are only

partially covered, and at larger length scales, because uncorrelated

flanking nucleotides contribute negatively to the similarity

information. In this sense, detected motifs cover a characteristic

length of about 7 bp. A similar length scale has been observed in

tandem repeats [45–47].

– The function K7(r) takes distance-dependent positive values in the range

of up to 50 bp and saturates to a positive asymptotic value for larger distances.

Thus, its distance dependence is compatible to that of the

sequence autocorrelation function D(r) shown in Fig. 1(a). This

pattern is due to site pairs with high mutual similarity, cw0:85.

– Correlated binding sites explain a substantial part of the similarity

information. We estimate this contribution by masking all functional

sites [53–55] and re-evaluating the function K7(r) in their

sequence complement; see Fig. 1(c). Known binding sites cover

about 10% of the regulatory modules, but the signal is reduced by

about 50%, indicating that these sites are an important source of

similarity information. The binding site-masked signal is compa-

rable to its counterpart K7(r) in non-regulatory intergenic

sequence.

– Microsatellite repeats explain only a small part of the similarity

information. We identify such repeats using the Tandem Repeat

Finder [59]. If we remove about 5% of the sequence in regulatory

modules as repeats, the similarity information is reduced by less

than 10%; Fig. 1(c). This is not surprising, because our sequence

similarity measure differs from that of repeat analysis. In

particular, our measure is sensitive to correlated segments on

larger distance scales than typical tandem repeats, because it does

not require a contiguous interval of self-similar sequence in

between.

– Homologous regions in other fly genomes show a consistent form of K7(r).
We analyze homologous regions of two other Drosophila species, D.

yakuba and D. pseudoobscura (see Materials and Methods). As shown

in Fig. S2, these putative regulatory modules have patterns K7(r)
of very similar overall amplitude and distance-dependence, with

enhanced values in the range of up to 50 bp.

In summary, our model-independent analysis shows that motifs

with a characteristic length of about 7 bp play an important part in

the distance-dependent sequence autocorrelation of Drosophila

regulatory modules. The characteristic length coincides with the

typical length of binding sites, and a substantial fraction of the

signal can be explained by sequence correlations involving known

binding sites. Therefore, we now focus the analysis on a smaller,

but experimentally validated set of sites [53–55]. This allows us to

analyze in detail the evolutionary mechanism generating the

sequence similarity between neighboring sites.

Evolutionary modes of binding sites
Binding sites are ideal objects to study the production of

information by sequence evolution. The sequence motif is

approximately known for about 70 transcription factors in

Drosophila, that is, we can analyze the full position-dependent

sequence information of these motifs, not just the similarity

information of motif pairs. Furthermore, there is a simple link

between sequence statistics and evolution of binding sites:

assuming the sequence distribution Q defines a motif at

evolutionary equilibrium, its sequence information H is propor-

tional to the average fitness effect of its binding sites,

H(QjP0)~NSFT, with a proportionality constant equal to the

effective population size [20,50,51,60]. The fitness contribution of

a particular binding sequence, F (a), is proportional to its log-

likelihood ratio in the distributions Q and P0. The ensemble of

these fitness values defines an information-based fitness landscape F
for binding of a specific transcription factor. These relations

between sequence statistics and fitness of binding sites quantify our

intuition that specific sequences are overrepresented in a motif to

the extent they confer a selective advantage over random

sequences [4]. If we write the motif distribution Q in the product

form of a position weight matrix, we obtain an approximate

expression for the fitness F (a) in terms of the position-specific

single-nucleotide frequencies qi(a) in the motif sequence and their

counterparts p0(a) in background sequence: NF (a)~P‘
i~1 log½qi(ai)=p0(ai)�. This expression, which is in its simplest

form already contained in Kimura’s U-shaped equilibrium

distribution for a two-allele locus [61], is known as Bruno-Halpern

model in the context of protein evolution [62] and has been used

to infer fitness effects of mutations in binding sites [20,50–

52,60,63]. Although this additive fitness model neglects fitness

interactions between nucleotides within binding sites as well as

between sites within a regulatory module, it is justified for the

purpose of this study (see below).

The fitness landscape F defines the selection coefficient of any

change from a state a to a state b of a binding site,

DFab~F (b){F (a). Together with the effective population size

and the mutation rates, these selection coefficients determine the

evolutionary dynamics of binding sites. In particular, the probability

Gt(bja) of evolving from an ancestor site a to a descendent site b
through a series of point substitutions within an evolutionary

distance t can be evaluated in an analytical way from the underlying

substitution matrix [58,64] (see Materials and Methods).

Here, we use this quantitative sequence evolution model to infer

modes of binding site evolution. For any given pair of adjacent

sites a and b that bind transcription factors A and B, respectively,

we want to evaluate the likelihood of two different histories of site

formation. In the first mode of evolution, the sites are assumed to

evolve to their present sequence states by point substitutions from

independent ancestor sequences and under independent selection

given by the fitness landscapes FA and FB, as illustrated in Fig. 2(a).

If the selection for binding is assumed to act over a sufficiently long

evolutionary time, the probability of observing the present

sequence states a and b in this independent mode of evolution is

simply QA(a)QB(b). This mode of evolution can only result in

distance-dependent sequence similarity arising from an increased

coverage with pairs of adjacent sites with correlated motifs QA and

QB (evidence for this effect will be discussed below). However, it

does not generate increased similarity of individual pairs of

adjacent sites beyond that of their motifs.

In the second mode of evolution, the sites are assumed to evolve

from a common ancestor sequence by a local duplication event at

a distance t from the present, followed by diversification under

selection given by separate fitness landscapes FA and FB: either the

original site is under stationary selection for binding factor A and

the duplicated site has evolved the new function of binding the

B{factor or vice versa, as illustrated in Fig. 2(b). In this mode, the

present sequences a and b have evolved from their last common

ancestor c by independent substitution processes with transition

probabilities Gt
A(ajc) and Gt

B(bjc). The dynamics results in a joint

probability of the form Qt(a,b)~
P

c Gt
A(ajc)Gt

B(bjc)Q(c), where

the distribution of the ancestor sequence is given by

Q(c)~½QA(c)zQB(c)�=2 (see Materials and Methods). In this

Regulatory Sequence Evolution by Local Duplication
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mode, distance-dependent sequence similarity arises due to

common descent, causing the sequences of adjacent sites to be

more similar than their motifs QA and QB. Importantly, this effect

is generic and not tied to any functional properties of the

transcription factors A and B. Fig. 2(c) shows a few examples of

enhanced sequence similarity in pairs of adjacent binding sites in

regulatory modules of D. melanogaster.

The relative likelihood of common versus independent descent

for a specific pair of sites a,b is given by the duplication score

S(a,b)~ log½Qt(a,b)=QA(a)QB(b)�. A positive score value indi-

cates that the pair a, b is more likely to have evolved by

duplication from a common ancestor sequence than independent-

ly. Clearly, the information about common or independent

descent comes from the similarity between the sequences a and

b in a gapless alignment. The particular feature of site sequences is

that they have evolved under selection for the binding motifs of the

transcription factors A and B. Therefore, our score measures the

similarity between the sequences a and b in a specific way: it

gauges matches and mismatches depending on the weights of

aligned nucleotides in their respective binding motifs QA and QB.

For example, a match gets low score if it concurs with a common

preferred nucleotide of the motifs, and high score if it goes against

the preferred nucleotide of at least one of the motifs. The

duplication score depends on the parameter t, which we choose by

a maximum-likelihood procedure (see Materials and Methods).

This parameter describes the expected excess similarity of site

pairs related by common descent, but it is not a linear clock of

divergence time. Simulated evolution of binding site histories

shows that the maximum-likelihood duplication score reliably

distinguishes between site pairs (a,b) with common and with

independent descent (see Materials and Methods). Below, we use

the distribution W (S) of duplication scores to infer the mode of

evolution prevalent in a given class of site pairs.

This likelihood analysis goes beyond the inference of the

sequence similarity K‘(r) introduced above. It can be seen as a

decomposition of the distance-dependent similarity between sites

into two parts: the similarity between their motifs, and the excess

similarity of the actual site pairs beyond that of their motifs. The

first part reflects functional correlations within regulatory modules

and is assigned to the background model QA(a)QB(b). Only the

second part provides evidence for common descent, which is

gauged by the scoring function S(a,b).

Our model scores only the sequence similarity within site pairs

and does not incorporate the insertions and deletions between the

sites after duplication, which determine their relative distance. This

is justified, because the likely divergence times of most duplicated

site pairs are much longer than repeat lifetimes. If a site duplicates

within a repeat, the relative distance between copies may

subsequently undergo rapid evolution due to the high indel rates

in these regions [46–49]. Given a surplus of insertions over deletions

in regulatory modules, we expect the relative distance to increase on

average [48]. The spacing of contemporary sites is then the result of

a long-term diffusive insertion/deletion dynamics within the repeats

active since duplication, most of which have decayed in today’s

sequence. This leaves the similarity of conserved functional sites as

the most prominent long-term marker of these dynamics.

Local sequence duplications in Drosophila
Using the duplication score S, we have evaluated the sequence

similarity of 506 pairs of neighboring binding sites in regulatory

modules of the Drosophila melanogaster genome. These sites are

experimentally validated and recorded in the REDfly database

[53–55] (see Materials and Methods). We infer the prevalent mode

of evolution as a function of the distance r between sites and obtain

the main result of this paper:

– In fly, binding sites with a distance of up to about 50 bp are more likely to

share a common ancestor than to have evolved from independent origins.

Fig. 3(a) shows the histogram of duplication scores S(a,b) for the

set of k~306 binding site pairs with rƒ50 bp. The score

distribution W (S) of these pairs is clearly distinguished from the

Figure 2. Evolutionary modes of transcription factor binding sites. The figure shows alternative formation histories for two adjacent binding
sites, whose present sequences bind transcription factors A and B, respectively. The color coding indicates the evolution of binding function for
factor A (red) and B (blue) with evolutionary time t. (a) Evolution from independent ancestor sequences. The sites evolve to their present states by
independent evolutionary processes under stationary selection given by different fitness landscapes FA and FB (see text). In this mode, adjacent sites
will show no enhanced average sequence similarity compared to the similarity of their motifs. (b) Evolution by duplication of a common ancestor
sequence. Left panel: The original site evolves in the stationary fitness landscape FA. At a distance t from the present, this site undergoes a
duplication. The duplicated site evolves its new function of binding B in the fitness landscape FB. Right panel: The same process with the roles of A
and B interchanged. In the duplication mode, the sites retain an enhanced sequence similarity, which reflects their common descent. (c) Examples of
adjacent functional binding sites with enhanced sequence similarity in the D. melanogaster genome. The sites of each pair are aligned. The color
background of nucleotide a at position i indicates its contributions to fitness (binding affinity) for factor A and B, i.e., fi,A(a) (level of red) and fi,B(a)
(level of blue). The sequence similarity leads to hybrid binding characteristics: some nucleotides of the A-site (top row) have binding characteristics of
the B-motif, and vice versa. Examples from top to bottom (factor A/factor B, genomic positions, duplication score): (i) Kruppel/hunchback, chr3L:
8639822/8639878, S~4:40, (ii) zeste/Trithorax-like, chr3R: 12560236/12560218, S~3:97, (iii) Kruppel/tailless, chr3L: 8639586/8639596, S~3:40, (iv)
pangolin/apterous, chr3R: 22997722/22997752, S~2:38.
doi:10.1371/journal.pcbi.1002167.g002
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background distribution Q0(S), which is obtained from pairs of sites

located in the same module at a distance rw200 bp and is

associated with independent descent. We decompose the score

distribution of adjacent sites in the form W (S)~
(1{l)Q0(S)zlQ(S), attributing the excess of large scores to pairs

of sites of common descent with a score distribution Q(S). Our best

fit of this mixed-descent model to the data distribution has a fraction

l~57% of adjacent site pairs formed by duplication; see Fig. 3(a).

The total log-likelihood of the mixed-descent model relative to the

background model is given by multiplying the relative entropy of the

distributions W and Q0 with the number of site pairs,

S~kH(W jQ0). We estimate Sw234, providing significant

statistical evidence that the prevalent mode in adjacent sites is

evolution from common descent (for details, see Materials and

Methods). We note that this significance emerges for the ensemble

of the adjacent site pairs, whereas the relative log-likelihood for

duplication per site pair, H(W jQ0), is of order one: individual site

sequences are inevitably too short to reliably discriminate between

the two evolutionary modes. Our conclusion that local sequence

duplications generate the observed excess similarity of adjacent sites

is supported by a number of further controls and a comparison with

the yeast intergenic regulatory sequences:

– The relative log-likelihood for duplication per site pair decreases with

increasing distance r between sites. In Fig. 3(b), we evaluate the relative

entropy H(WrjQ0) for the score distributions Wr(S) of site pairs

with different values of mutual distance r. We find a rapid decay

up to about 100 bp, that is, the score distribution Wr becomes

successively more similar to the background distribution Q0 with

increasing site distance. This pronounced distance-dependance is

comparable to that of the total sequence similarity shown in

Fig. 1(c) and is consistent with local duplications as underlying

mechanism.

– Similarity of neighboring sites is broadly distributed over pairs of

transcription factors. We partition the 306 site pairs with a mutual

distance of less than 50 bp by factor pairs and evaluate the partial

score averages SSTAB. We compare the distribution of these

averages with the corresponding distribution of averages evaluated

after scrambling the score values of the site pairs, as shown in

Fig. 3(c). The two distributions are statistically indistinguishable,

which shows that excess sequence similarity is a broad feature of

adjacent binding sites and is not limited to a subset of sites for factor

pairs with specific functional relationships. This supports our

conclusion that the excess sequence similarity reflects common

descent and not fitness interactions (epistasis) between sites. Of

course, epistasis is common for binding sites in the same regulatory

module, because these sites perform a common regulatory function.

However, generic interactions couple the binding energies of

adjacent sites, not directly their sequences. Epistatic effects

generating excess sequence similarity are conceivable for specific

factor pairs, but do not appear to be a parsimonious explanation for

the broad similarities of adjacent binding sites we observe.

– In yeast, binding site duplications are not frequent. For comparison,

we have also evaluated a set of 1352 pairs of binding sites in the

Saccharomyces cerevisiae genome. Fig. 3(d) shows distribution of

duplication scores S(a,b) for the set of binding sites with rƒ50 bp.

This distribution is strongly peaked around zero (because the

maximum-likelihood value of t is large, see Materials and

Methods) and indistinguishable from the distribution of the

control set of random site pairs; both distributions have a negative

average. As in Drosophila, most binding sites in the same intergenic

region of S. cerevisiae are located within 50 bp from each other.

However, we do not observe evidence for local duplications as a

mode of binding site formation in yeast. Clearly, this result does

not exclude that such duplications take place, but they do not

appear to be frequent enough to generate a statistically significant

excess similarity of neighboring sites. This is not surprising given

the differences in regulatory architecture between yeast and fly:

individual sites in S. cerevisiae are more specific than in Drosophila;

the average sequence information of a binding motif is

H&12{17 bits, compared to H&6{8 bits [57]. Accordingly,

a larger part of the regulatory functions in yeast relies on single

sites, and there are no regulatory modules which would require

frequent duplications for their formation.

Adaptive potential of duplications
Do the inferred site duplications have adaptive potential for the

formation of novel binding sites? Here, we use the term adaptive

Figure 3. Common vs. independent descent of binding sites in fly and yeast. (a) Histogram of the duplication score S for 306 pairs of
binding sites with a mutual distance of up to 50 bp in the genome of D. melanogaster (sum of grey-shaded and violet-shaded part). Decomposition of
counts according to the mixed-descent model (see Materials and Methods): 43% of the site pairs are of independent descent and have the score
distribution Q0(S) (obtained from pairs with relative distance rw200 bp, dashed line), 57% of the site pairs of are of common descent and have the
score distribution Q(S) (violet-shaded). (b) Relative log-likelihood for duplication per site pair, i.e., relative entropy H(WrjQ0) obtained from the score
distribution Wr(S) of site pairs in the relative distance range (r,rz15) bp (evaluated from a total of 506 sites). The rapid decay of this function
suggests a local mechanism generating excess similarity between adjacent sites. (c) Histogram of partial score averages SSTAB for all factor pairs
(A,B) binding the site pairs of (a) (grey-shaded) and corresponding distribution of averages obtained after scrambling the score values of site pairs
(normalized to the same number of total counts, dashed line). The two distributions are statistically indistinguishable (KS-test p-value = 0.8378), which
shows that positive duplication scores are not limited to a subset of factor pairs. (d) Histogram of the duplication score S for 833 pairs of binding sites
with a mutual distance of up to 50 bp in the genome of S. cerevisiae (grey-shaded). The distribution is not significantly different from the null
distribution obtained from random site pairs (normalized to the same number of total counts, dashed line), i.e., there is no evidence for common
descent as prevalent evolutionary mode.
doi:10.1371/journal.pcbi.1002167.g003
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potential to indicate that the duplication itself may be a neutral

process, and selection for factor binding may latch on later to

duplicated sites. The duplication of a site for a given transcription

factor has obvious adaptive potential towards formation of an

adjacent site for the same factor. But local duplications also have

adaptive potential if the duplicated site is to evolve the new

function of binding a different factor, because the binding motifs of

transcription factors with adjacent sites are correlated. This

correlation quantifies the ability of one factor to recognize the

binding sites of another factor, including seed sites generated by

sequence duplications. Specifically, we define the binding

correlation HAB of a transcription factor A with another factor

B as the average information-based fitness to bind factor B in the

ensemble of A-sites. In Fig. 4, this quantity is evaluated for all

factor pairs (A,B) with adjacent binding sites, together with the

range of fitness FB of known target sites for factor B and the

average FB in background sequence (see Materials and Methods).

For most such factor pairs, the fitness of a typical A-site is seen to

be similar to that of weak B-sites and significantly larger than the

average fitness of background sequence. This binding correlation

between motifs is sufficient so that an A-site duplicate can act as a

seed for a B-site, which can subsequently adapt its strength by

point mutations. The binding correlation is specific to factors

which have adjacent binding sites; we have found no such effect in

the control ensemble of all factor pairs (A,B) (most of which do not

have adjacent sites). Furthermore, some highly specific motifs,

such as hunchback, twi and z do not show binding correlations with

other factors.

Discussion

Local sequence duplication as a mechanism of regulatory
evolution

Local sequence duplications (and deletions) are a generic

evolutionary characteristic of intergenic DNA and, in particular, of

regulatory sequence [44–49]. In this study, we have established

evidence for local sequence duplications as a mechanism that

transports and produces cis-regulatory information. These duplica-

tions generate specific, distance-dependent sequence similarity in

strongly correlated pairs of sites with a relative distance of up to about

50 bp, which account for a substantial part of the sequence

autocorrelation in fly regulatory modules. In particular, they provide

a parsimonious explanation for the excess sequence similarity of

transcription factor binding sites, which is broadly observed in this

range of relative distance. We conclude that the majority of these

adjacent site pairs have evolved from a common ancestor sequence.

The large amplitude of the duplication signal may be the most

surprising result of this study. It far exceeds the level expected from

the repeats in contemporary sequence, which cover only about 5

percent of binding sites and are typically shorter than the distance

between correlated sites. Common-descent site pairs are the

cumulative effect of past duplications over macro-evolutionary

intervals, whose trace is conserved by selection on site functionality.

This result establishes local duplication as a pervasive formation

mode of regulatory sequence, which generates, for example, the

known local variations in site numbers between Drosophila species.

Of course, our evidence for this mode is statistical and, at this point,

is confined to a limited dataset of binding sites with confirmed

functionality [53–55]. The duplication mode appears to be specific

to multicellular eukaryotes; we have not found comparable evidence

in the yeast genome. Our findings are relevant for genome analysis

in two ways: including local duplications should inform inference

methods for binding sites as well as alignments of regulatory

sequence with improved scoring of indels [46–49]. With such

methods, it may become possible to follow the evolutionary history

of binding site duplications across species.

Life cycle of a binding site
We have found evidence that local duplications can confer

adaptive potential for the formation of novel binding sites, because

they generate seed sequences with marginal binding specifically in

the vicinity of existing sites. This mechanism is necessary, because

point mutations alone can only lead to rapid loss but not to gain of

new sites with positional specificity. Thus, duplications and point

mutations complement each other, suggesting that typical binding

sites within multicellular eukaryotes have an asymmetric life cycle:

formation within a functional cluster by local duplication,

adaptation of binding energy by point mutations, evolution of

relative distance to neighboring sites by insertions and deletions in

flanking sequence, conservation by stabilizing selection on binding

energy, and loss by point mutations.

The life cycle of individual binding sites interacts with other

levels of genome evolution. Gene duplications with subsequent

sub-functionalization have been identified as an important

evolutionary mode specifically in higher eukaryotes [65]. If

subfunctionalization is initialized at the level of gene regulation,

it amounts to a loss of regulatory input for both gene duplicates

and provides a mechanism for adaptive loss of binding sites. This

process alone would lead to genomes with many genes, but few

functions per gene. Maintaining regulatory complexity with multi-

functional genes as observed in eukaryotic genomes [23,26]

requires a converse evolutionary mode: gain of new functions by

existing genes. At the regulatory level, this amounts to gain of

regulatory input, i.e., adaptive formation of new binding sites.

Sequence evolution and regulatory grammar
Previous studies have identified regulatory modules as important

units of transcriptional control, in which clusters of binding sites

bind multiple transcription factors with cooperative interactions.

The sites in a cluster follow a regulatory grammar resulting from

natural selection acting on site order, strength, and relative distances

[36–38]. If sequence duplications play a major role in the formation

of such clusters, we may ask how much of their observed structure

reflects this mode of sequence evolution, rather than optimization of

regulatory function by natural selection. Local duplications

generically produce descendant sites, which are weak binding sites

for another factor at best, as shown in Fig. 4. (Significant

heterogeneity in binding strength between adjacent sites is indeed

observed in our sample.) The resulting binding sequences are hardly

optimal in terms of specificity and discrimination between different

factors. Cooperative binding between transcription factors may

have evolved as a secondary mechanism to confer regulatory

function to these sequence structures.

In this paper, we have argued that local sequence duplications

facilitate the adaptive evolution of gene regulatory interactions.

However, the adaptive potential of duplications does not imply

that the duplication process itself has to be adaptive or even

confined to regulatory sites. Similar to gene duplications [65],

many site duplications may be neutral and provide a repertoire of

marginal regulatory links. Adaptive diversification can build

subsequently on this repertoire, conserving and tuning those links

that confer a fitness advantage and discarding others.

Materials and Methods

Regulatory sequences and position weight matrices
The sequence analysis of D. melanogaster is based on the cis-

regulatory modules and experimentally validated binding sites
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collected in the REDfly v.2.2 database [53–55], and on the

position weight matrices of Dan Pollard’s dataset (http://www.

danielpollard.com/matrices.html). To measure the distance-de-

pendent sequence similarity K‘(r), we use the 346 known

regulatory modules with length of more than 1000 bp in D.

melanogaster. The analysis in D. yakuba and D. pseudoobscura is based

on the 249 well-aligned homologous regions obtained from

multiple alignments of 12 Drosophila species (dm3, BDGP

release5); see Fig. S2. For the evolutionary inference in the second

part of the paper, we use only the experimentally validated binding

sites contained in these modules which are not necessarily selected

for high similarity to motifs or for high mutual similarity. To avoid

biases in our analysis, the set of sites is truncated in three ways: (i)

We only use binding sites for transcription factors that occur in at

least two different regulatory modules, so that the position weight

matrix is not biased by the sequence context of a single module. (ii)

We use only sites that have no sequence overlap with other sites in

the dataset, because our inferred fitness landscapes describe the

selection for a single regulatory function [13]. (iii) We exclude sites

in the X chromosome, which could bias the results by its high rate

of recent gene duplications and the abundance of repeat sequences

[66,67]. These conditions produce a cleaned set of 506

transcription factor binding site pairs located in 74 cis-regulatory

modules. For the analysis in S. cerevisiae, we use sites and position

weight matrices from the SwissRegulon database [68]. These

footprints do not always match the length ‘ of their position weight

matrices. To produce a set of site sequences of common length ‘,
longer footprints are cut and shorter ones joined with flanking

nucleotides, such that the binding affinity is maximized.

Sequence information measures
Sequence autocorrelation is a measure of enhanced mean

similarity between the nucleotides of a sequence segment. The

distance dependence of the autocorrelation signal provides

information about the range, within which the nucleotides

appearing in the sequence are correlated. In a given sequence

segment a1, . . . ,aL, the nucleotide frequencies are given by

p0 að Þ~ 1

L

XL

n~1

d an,að Þ, ð1Þ

where d(an,a)~1 if an~a and d(an,a)~0 otherwise. These

determine the mean similarity between two random nucleotides

of the segment, c0~
P

a p2
0(a). The sequence autocorrelation

function is then defined by

D rð Þ~{c0z
1

L{r

XL{r

n~1

d an,anzrð Þ: ð2Þ

We evaluate this function in the 346 regulatory modules of

Drosophila melanogaster genome with length of more than 1000 bp

identified by REDfly v.2.2 database [53–55]. As shown in Fig. 1(a),

we find an approximate exponential decay with a characteristic

length of about 100 bp as the range of sequence correlation. The

mean identity c0 is evaluated in a local window of 500 bp

(changing the window length affects the baseline of this function,

but not its dependence on distance up to 100 bp). Information

about the spatial distribution of these correlated nucleotides along

the genome is contained in higher orders of sequence autocorre-

lation (i.e., reoccurrence of doublets, triplets, etc.). Here, we use

information theory to identify such clusters of correlated

nucleotides in a sequence region.

We want to detect reoccurring nucleotide patterns or motifs. A

motif of length ‘ is a probability distribution Q(a) for sites

a~(a1, . . . ,a‘) which differs significantly from the background

Figure 4. Adaptive potential of binding site duplications. The binding correlation HAB of all pairs of Drosophila transcription factors (A,B)
which have adjacent binding sites in a common regulatory module is evaluated as the average information-based fitness of A-sites for factor B and
plotted against the sequence information HB of the binding motif of factor B (blue crosses); see eqs. (20) and (21) in Materials and Methods. The
binding correlation is compared to the distribution of fitness values FB of the B-sites (red dots, the average fitness for each factor is shown as
diamond and equals the abscissa HB) and to the average fitness FB in background sequence (green dots); see eq. (22) in Materials and Methods. The
binding correlation HAB is significantly larger than the background average of FB and is comparable to the fitness FB of weak B-sites in a substantial
fraction of cases. Some highly specific motifs, such as hunchback, twi and z do not show binding correlations with other factors.
doi:10.1371/journal.pcbi.1002167.g004
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distribution P0(a). If we neglect correlations between nucleotides,

we can write these distributions as the product of single-nucleotide

frequencies,

Q að Þ~P‘
i~1qi aið Þ ð3Þ

and P0(a)~P‘
i~1p0(ai). The 4|‘ matrix of single-nucleotide

frequencies (3) is called the position weight matrix of the motif.

The sequence information of the motif is defined as the relative

entropy (Kullback-Leibler distance) of these distributions [69],

H QjP0ð Þ~
X‘
i~1

X
a

qi að Þ log
qi að Þ
p0 að Þ : ð4Þ

To study the sequence coverage by informative motifs, we use a

reduced form of the full frequency distribution Q by mapping it to

the mean similarity of its motif sites. Hence, even without any

prior knowledge on frequency distributions, we can recover part of

the sequence information for those motifs that occur more than

once in the sequence segment. Two sites drawn from the motif

have a mean similarity c~
P

i,a q2
i (a) between aligned nucleotides,

which is higher than the background mean similarity c0. The

similarity information of the motif is given by the relative entropy

K c,‘jc0ð Þ~‘ c log
c

c0
z 1{cð Þ log

1{c

1{c0

� �
: ð5Þ

Similarity information between pairs of sites is a somewhat diluted

measure of sequence information. As a rule of thumb, the mutual

similarity entropy per site pair, K(c,‘jc0), recovers about half of

the motif information per site, H(QjP0).

Inference of similarity information by dynamic
programming

To estimate the total similarity information K‘(r) of all strongly

correlated pairs of sites with distance r and length ‘ in a sequence

segment of length L, we construct a set

f(an1
, . . . ,an1z‘{1),(an1zr, . . . ,an1zrz‘{1)g, . . . ,

f(ann , . . . ,annz‘{1),(annzr, . . . ,annzrz‘{1)g
ð6Þ

of site pairs with the following properties:

(i) The left (and also the right) sites of all pairs have no sequence

overlap,

naz1{na§‘ for a ~ 1, . . . , n { 1 : ð7Þ

(ii) The mean similarity of each pair is greater than a threshold

cmin,

ca:
1

‘

X‘
i~1

D anazi,anazrzið Þwcmin for a ~ 1, . . . , n : ð8Þ

(iii) The sum of mutual similarities
Xn

a~1
ca is maximal (see

Fig. S1)

By the dynamic programming recursion

Ct~ max Ct{1,Ct{‘z
1

‘

X‘
i~1

d at{‘zi{r,at{‘zið Þ
" #

{cmin

" #
, ð9Þ

we obtain the sequence of partial scores C1, . . . ,CL with the initial

condition C1~0. We then use a backtracking procedure (see, e.g.,

[58]) to determine the set of positions (n1, . . . ,nn) and, hence, the

number n(r,‘,cmin) and the average similarity

�cc(r,‘,cmin)~(CL=n)zcmin of the high-similarity pairs (6). To

estimate the expected number of pairs in background sequence,

n0(r,‘,cmin), we apply the same procedure to 1000 sequences of

length L, which are generated by a first-order Markov model

P a1, . . . ,aLð Þ~p0 a1ð ÞP
L

n~2
T anjan{1ð Þ ð10Þ

with the same single-nucleotide frequencies p0(a) and conditional

frequencies T(ajb) as in the actual sequence. We then evaluate the

excess Dn(r,‘,cmin)~n(r,‘,cmin){n0(r,‘,cmin) and obtain an

estimate of the total information contained in the enhanced

autocorrelation of motifs as given by eq. (5),

K‘ rð Þ~

‘max
cmin

Dn r,‘,cminð Þ
L

log
�cc r,‘,cminð Þ

c0

z log
1{�cc r,‘,cminð Þ

1{�cc0

� �� �
:
ð11Þ

We infer cmin by maximum likelihood analysis of the total

similarity information in the sequence. This method also allows for

optimization of the motif length ‘, similar to the procedure in the

local sequence alignment algorithms [58].

Evolutionary model for binding sites
Our evolutionary dynamics of binding site sequences

a~(a1, . . . ,a‘) for a given transcription factor is determined by

the Bruno-Halpern fitness model [62] derived from the position

weight matrix qi(a) (i~1, . . . ,‘) and the background frequencies

p0(a),

NF að Þ~
X‘
i~1

fi aið Þ with fi að Þ~ log
qi að Þ
p0 að Þ : ð12Þ

This relationship between fitness and nucleotide frequencies is valid if

binding sites are at evolutionary equilibrium under mutations, genetic

drift, and selection, and background sequence is at neutral

equilibrium (accordingly, all inferred fitness values are scaled in units

of the effective population size N). The relationship of the

evolutionary ensembles with the underlying thermodynamics of

site-factor interactions is discussed, for example, in ref. [52]. Eq. 12

defines an information-based fitness model: the average fitness of

functional binding sites equals the sequence information of the motif,

SFT~H QjP0ð Þ ð13Þ
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with Q(a)~P‘
i~1qi(ai) and P0(a)~P‘

i~1p0(ai); see eqs. (1), (3)

and (4). We infer p0(a) from the local background frequency of the

region 500 base pairs around each binding site. The rates ua?b of

point substitutions a?b within binding sites are determined by the

scaled selection coefficients NDFab~N½F (b){F (a)� derived from

this fitness model and the point mutation rates ma?b (which are

assigned a uniform value m for simplicity). Here, we use the

standard Kimura-Ohta substitution rates

ua?b~ma?b

NDFab

1{ exp {NDFabð Þ , ð14Þ

which are valid in the regime mN%1 (in which subsequent

substitution processes are unlikely to overlap in time) and DFab%1
[61,70]. The matrix of these substitution rates then determines the

transition probabilities (propagators) Gt(bja) from an arbitrary

initial sequence a to an arbitrary final sequence b within an

evolutionary distance t [58,64]. Given the set of transition

probabilities, we obtain the joint probability Qt(a,b) for a pair

of sites (a,b) that bind transcription factors A and B, respectively,

and have evolved from a common ancestor c as described in the

main text and in Fig. 2(b). First, we assume that the ancestor site is

at evolutionary equilibrium under selection to bind factor A, that

is, the contemporary site a has the ancestral function and b has

evolved a new function after duplication. This gives the

contribution

Qt
A a,bð Þ~

X
c

Gt
A ajcð ÞGt

B bjcð ÞQA cð Þ

~
X

c

Gt
B bjcð ÞGt

A cjað ÞQA að Þ, ð15Þ

where we have used the detailed balance condition of the

substitution dynamics [64]. There is a second contribution

Qt
B(b,a) describing the case of the ancestor c under stationary

selection to bind factor B. Weighing these cases with equal prior

probabilities, we obtain

Qt a,bð Þ~ 1

2
Qt

A a,bð ÞzQt
B b,að Þ

� �
: ð16Þ

In our analysis of pairs of adjacent binding sites in Drosophila, there

is usually a dominant contribution from one of the terms, from

which we can infer the likely function of the ancestor site. In the

limit of large t, the evolution from a common ancestor becomes

indistinguishable from evolution by independent descent,

limt?? Qt(a,b)~QA(a)QB(b).

Inference of common descent
The duplication score

S a,bð Þ~ log
Qt a,bð Þ

QA að ÞQB bð Þ ð17Þ

is a measure of sequence similarity between binding sites. This

score depends on the evolutionary distance parameter t. We infer

the optimal value of t by maximizing the likelihood ratio between

the score distribution of pairs with mutual distance rv50 and the

score distribution of pairs with independent origin. In D.

melanogaster, we find a finite maximum-likelihood evolutionary

distance t&0:4m{1 and significantly positive values of the

duplication score for adjacent binding sites. In S. cerevisiae, we find

large values t&m{1, i.e., there is no statistical evidence for

evolution by common descent. Our conclusions are largely

independent of the values of t used in (16) and (17). These values

should be regarded as model fit parameters for the observed

sequence similarities. Energy-based fitness models [13,64], which

take into account the epistasis between mutations within binding

sites, are required to obtain more accurate estimates of t, which

can be tested against phylogenetic data. Epistasis will increase the

inferred values of t compared to the additive (Bruno-Halpern)

model [13,64].

We evaluate the score distribution W (S) of a given class of site

pairs in terms of a mixture model of common and independent

descent,

W Sð Þ~ 1{lð ÞQ0 Sð ÞzlQ Sð Þ: ð18Þ

The distribution of scores for independent descent, Q0(S), is

obtained from pairs of sites in a common module with a relative

distance rw200 bp (Fig. 3(a), dashed line). This distribution is

approximately Gaussian and has a width of order one, which is

consistent with the simulations reported below. Because we build

Q0 from sites in a common module, its score average is above that

for pairs of sites located in different modules. In this way, the

overall sequence similarity within modules, which depends on the

local GC-content, is assigned to the background model and does

not confound the evidence for common descent. The distribution

Q(S) is the best fit to the the large-score excess of the distribution

W (S) for adjacent sites with a relative distance rv50 bp (Fig. 3(a),

violet-shaded). This distribution has larger mean and is broader

than the background distribution Q0, which is also consistent with

the simulations reported below.

Given a set of k site pairs (a,b) with scores S(a,b) described by

the distribution W (S), the log-likelihood of the mixed-descent

model (18) relative to the independent-descent background model

is given by

S~kH W jQ0ð Þ~
X

site pairs

log
W S a,bð Þð Þ
Q0 S a,bð Þð Þ

� �

~
X

site pairs

log 1{lð Þzl
Q S a,bð Þð Þ
Q0 S a,bð Þð Þ

� �
;

ð19Þ

it equals the product of the number of sites and the relative

entropy H(W jQ0). The extensive quantity S measures the

statistical evidence for the mixture model based on the number

and the score distribution of site pairs, whereas H(W jQ0)
quantifies only the shape differences between the distributions

W (S) and Q0(S). We evaluate eq. (19) using the conservative

estimate Q(S)=Q0(S)§ exp (S{S0) with S0~0:7; see Fig. 3(a).

We have tested our inference procedure by simulations of the

sequence evolution for pairs of binding sites with common and with

independent descent. For these simulations, we use four pairs of

different factors fA,Bg~fftz,bcdg,fftz,abd{Ag,fbcd,abd{Ag,
fbcd,Krg, and two pairs of equal factors fA,Bg~
fftz,ftzg,fbcd,bcdg. For each factor pair, we obtain an ensemble

of 25000 pairs of binding sites (a,b) with a duplication in their

Regulatory Sequence Evolution by Local Duplication
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evolutionary histories, as described by Eqs. (15, 16) and Fig. 2(b). We

first obtain 500 duplication events (c,t): the last common ancestor

sequence c is drawn with equal likelihood from the ensemble QA(c) or

QB(c), and the divergence time t is drawn from an exponential

distribution with mean �tt~0:4=m. For each duplication event, we

draw 50 site pairs (a,b) from the distribution Qt
A(ajc)Qt

B(bjc)
describing evolution under selection for binding of factors A and B,

respectively. We then apply our scoring procedure to this set of site

pairs. As for the real sequence data, we infer a single maximum-

likelihood parameter tML by maximization of the total duplication

score S. As shown in Fig. S3(a), S has a pronounced maximum at a

value tML&0:3=m, which is close to the mean divergence time �tt of the

input data. We conclude that the constraint of a fixed t does not

confound the inference of common descent. We also obtain separate

score distributions for sites (a,b) binding the pairs (A,B) of equal

factors and of different factors listed above; see Fig. S3(b) and Fig.

S3(c). These distributions are similar and clearly distinguish duplicated

site pairs from pairs with independent ancestries for both factor

groups. We conclude that our method can infer common descent of

binding sites, independently of their functional characteristics.

Binding correlation of transcription factors
We define the binding correlation HAB for each ordered pair of

factors (A,B) as the average information-based fitness of A-sites for

the B-factor,

HAB~SFBTA~
X
i,a

qA,i að ÞfB,i að Þ with fB,i að Þ~ log
qB,i að Þ
p0 að Þ : ð20Þ

This value is an estimate for the compatibility of the A-sites with

the transcription factor B and equals, up to a constant, the

information-theoretic cross entropy between the distributions QA and

QB. In Fig. 4, this quantity is compared to (i) the sequence

information HB of the motif QB, which equals the average fitness

of B-sites for the B-factor by eq. (4),

HB:H QBjP0ð Þ~
X
i,a

qB,i að ÞfB,i að Þ, ð21Þ

and (ii) to the average fitness of background sequence for the B-

factor,

H0B~
X
i,b

p0 bð ÞfB,i bð Þ: ð22Þ

Supporting Information

Figure S1 Motif detection in sequence segments (sche-
matic). The figure shows a configuration of correlated sequence

sites of length ‘~10 bp and distance r~14 bp from each other.

Pairs of correlated sites have the following properties: (i) The

average mutual similarity between aligned nucleotides is larger

than a given threshold, c§cmin~0:8. (ii) The left sites (and, hence,

also the right sites) of all pairs have no common nucleotides. This

condition is necessary in order to avoid overcounting of mutual

similarity in overlapping site pairs. (iii) The sum of the mutual

similarities of all pairs in the set is maximal. In the example shown,

there are three different motifs with reoccurring sequence patterns

marked by different colors (red, blue, green). To illustrate the

alignment of the site pairs, we shift the whole sequence by r~14
bp in the second row. The left and right site of each motif are

shown in boldface in the first and the second row, respectively.

Mismatches between aligned sites of the same motif are shown in

boldface gray letters. The flanking regions separating the

correlated sequence pairs are shown in smaller font.

(TIFF)

Figure S2 Sequence similarity in regulatory modules of
3 Drosophila species. Distance-dependent similarity informa-

tion K7(r) for motif length ‘~7 in regulatory modules (red) and in

generic intergenic sequence (black), evaluated in D. melangaster and

in the homologous regions of D. yakuba and D. pseudoobscura (see

Materials and Methods). These data show a consistent pattern of

overall amplitudes and of decay lengths.

(EPS)

Figure S3 Tests of the duplication inference method. We

simulate binding site pairs (a,b) evolving by common descent or by

independent descent, as described in Materials and Methods. (a)

Dependence of the total duplication score S on the time

parameter t for an ensemble of 150000 site pairs of common

descent. This function has a pronounced maximum at a value

tML&0:3=m, which is close to the mean divergence time �tt~0:4=m
since duplication. (b) Distributions of the score S (with t~tML) for

pairs of sites binding different factors. The distribution for sites of

common descent (filled curve) is distinguished from the distribu-

tion for sites with independent descent (solid curve) by its increased

score average, SST{SST0~2:1, and by its increased width. (c)

Same as (b) for pairs of sites binding the same factor. The

distribution for sites of common descent (filled curve) has again an

increased average, SST{SST0~1:6, and an increased width.

(EPS)
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52. Lässig M (2007) From biophysics to evolutionary genetics: statistical aspects of

gene regulation. BMC Bioinformatics 8 Suppl 6: S7.

53. Bergman CM, Carlson JW, Celniker SE (2005) Drosophila DNase I footprint
database: a systematic genome annotation of transcription factor binding sites in

the fruity, Drosophila melanogaster. Bioinformatics 21: 1747–9.

54. Gallo SM, Li L, Hu Z, Halfon MS (2006) REDy: a regulatory element database
for Drosophila. Bioinformatics 22: 381–3.

55. Halfon MS, Gallo SM, Bergman CM (2008) REDy 2.0: an integrated database

of cis-regulatory modules and transcription factor binding sites in Drosophila.
Nucleic Acids Res 36: D594–8.

56. Segal E, Widom J (2009) Poly(dA:dT) tracts: major determinants of nucleosome

organization. Curr Opin Struct Biol 19: 65–71.

57. Wunderlich Z, Mirny LA (2009) Different gene regulation strategies revealed by
analysis of binding motifs. Trends Genet 25: 434–40.

58. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological sequence analysis:

probabalistic models of proteins and nucleic acids. Cambridge, UK: Cambridge
University Press.

59. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences.

Nucleic Acids Res 27: 573–80.

60. Moses AM, Chiang DY, Kellis M, Lander ES, Eisen MB (2003) Position specific
variation in the rate of evolution in transcription factor binding sites. BMC Evol

Biol 3: 19.

61. Kimura M (1962) On the probability of fixation of mutant genes in a population.

Genetics 47: 713–9.

62. Halpern AL, Bruno WJ (1998) Evolutionary distances for protein-coding

sequences: modeling site-specific residue frequencies. Mol Biol Evol 15: 910–7.
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