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ABSTRACT The seasonal influenza A virus undergoes rapid evolution to escape human immune response. Adaptive changes occur
primarily in antigenic epitopes, the antibody-binding domains of the viral hemagglutinin. This process involves recurrent selective
sweeps, in which clusters of simultaneous nucleotide fixations in the hemagglutinin coding sequence are observed about every 4 years.
Here, we show that influenza A (H3N2) evolves by strong clonal interference. This mode of evolution is a red queen race between viral
strains with different beneficial mutations. Clonal interference explains and quantifies the observed sweep pattern: we find an average
of at least one strongly beneficial amino acid substitution per year, and a given selective sweep has three to four driving mutations on
average. The inference of selection and clonal interference is based on frequency time series of single-nucleotide polymorphisms,
which are obtained from a sample of influenza genome sequences over 39 years. Our results imply that mode and speed of influenza
evolution are governed not only by positive selection within, but also by background selection outside antigenic epitopes: immune
adaptation and conservation of other viral functions interfere with each other. Hence, adapting viral proteins are predicted to be
particularly brittle. We conclude that a quantitative understanding of influenza’s evolutionary and epidemiological dynamics must be
based on all genomic domains and functions coupled by clonal interference.

INFLUENZA is one of the major infectious diseases in
humans. Seasonal strains of the influenza A (H3N2) virus

circulating in the human population account for about half
a million deaths per year. Due to its impact on health, in-
fluenza has become a uniquely well-documented system of
molecular evolution. The viral genome contains eight seg-
ments, one of which encodes the surface protein hemagglu-
tinin (HA). The HA1 domain of this protein contains
antigenic epitopes, which are the primary loci of interaction
with the human immune system (Wiley et al. 1981). Its gene
sequence is now available for several thousand strains (Bao
et al. 2008) and is used to construct strain trees spanning
several decades of influenza evolution (Bush et al. 1999).

A striking and extensively studied feature of this process
is its punctuated pattern, which is particularly visible in
antigen–antibody binding data: periods of relative stasis
(called antigenic clusters) are separated by cluster transi-
tions, which occur every few years and produce most of

the antigenic adaptation (Smith et al. 2004). Clustering
has also been observed in the temporal distribution of amino
acid fixations (Plotkin et al. 2002; Wolf et al. 2006; Shih et al.
2007) and in simulation studies of epidemiological models
(Ferguson et al. 2003; Gog et al. 2003; Tria et al. 2005; Koelle
et al. 2006; Strelkowa, 2006; Minayev and Ferguson 2009).
However, the evolutionary cause of this pattern remains con-
troversial (Holmes and Grenfell 2009). Clustering has been
described by a model of episodic evolution, in which antigenic
clusters correspond to periods of neutral evolution and posi-
tive selection is restricted to cluster transitions (Koelle et al.
2006; Wolf et al. 2006; Koelle et al. 2010). Other recent
studies argue that most amino acid substitutions in the viral
epitopes are under positive selection (Shih et al. 2007) and
clusters of their fixations are caused primarily by fitness inter-
actions (epistasis) between epitope sites (Shih et al. 2007;
Kryazhimskiy et al. 2011).

In this article, we focus on genomic determinants of
influenza’s evolutionary process. As we show below, there is
no significant recombination between mutations within the
HA1 domain. Hence, epitope and non-epitope sites of the
HA1 sequence evolve in a genuinely asexual way, that is,
under almost complete genetic linkage. At the same time,
the population dynamics of influenza involves reassortment
between genomic segments, which is known to be a major
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factor of its epidemiology (Holmes et al. 2005; Rambaut
et al. 2008). The key point of this article is to show that
rapid adaptation under linkage produces clonal interference,
a specific mode of evolution by recurrent selective sweeps,
within the hemagglutinin gene. Clonal interference is char-
acteristic of asexual organisms evolving at high mutation
rates and is well documented by evolution experiments with
bacterial and viral laboratory populations (Gerrish and
Lenski 1998; de Visser et al. 1999; Miralles et al. 1999;
Perfeito et al. 2007; Miller et al. 2011). Here, we use ge-
nome analysis to obtain the first evidence of clonal interfer-
ence in a wild system. This mode of evolution produces
temporal clustering of fixations as a generic consequence
of genetic linkage and high supply of beneficial mutations,
which does not depend on details of the fitness landscape
(Park and Krug 2007). Thus, it provides a new, parsimonious
explanation for influenza’s punctuated genome evolution.

Theoretical studies of asexual evolution show that clonal
interference emerges whenever there is a sufficiently high
supply of beneficial mutations to trigger competition between
mutant clones (Gerrish and Lenski 1998; Wilke 2004; Schiffels
et al. 2011). A clone is a set of strains with similar sequences
and a recent common ancestor, which is distinguished from its
background by the new mutations that appear in its ancestor
sequence. For any set of competing clones, only lineages
descending from a single high-fitness clone will survive, while
all other clones will eventually become extinct. The expansion
of successful clones is driven by strongly beneficial mutations,
which fix in the population rapidly. We call these events se-
lective sweeps. Neutral and moderately deleterious changes
are frequently carried to fixation by hitchhiking, that is, as
passenger mutations within sweeps. At the same time, sweeps
drive other moderately beneficial mutations to loss, if they are
harbored in outcompeted clones. Note that we have defined
the terms “clone” and “sweep” in a broad way, which is ade-
quate for the high mutation rate of influenza. Clones consist of
strains that are genetically similar but often not identical.
While successful clones expand in the population, subsequent
mutations continue to produce sequence and fitness variation;
that is, new clones originate nested within previous clones
(Park and Krug 2007; Desai and Fisher 2007). As it has be-
come clear from recent studies, the competition between
beneficial mutations in disjoint clones and their mutual rein-
forcement in nested clones are two sides of the same dynam-
ics: interference interactions can be positive or negative
(Schiffels et al. 2011; Good et al. 2012; Lässig 2012). In other
words, the recurrent selective sweeps in the clonal interfer-
ence mode reduce but do not remove diversity, and the pop-
ulation always remains multiclonal. Thus, clonal interference
differs from a regime of episodic selective sweeps, which
has been suggested as a model for influenza (Koelle et al.
2006). Episodic sweeps occur if there is a low supply of
strongly beneficial mutations, that is, for sufficiently low mu-
tation rates or small populations (Gillespie 1991, 1993). Every
such sweep removes all fitness variation from the population,
and there are extended periods of neutral evolution between

consecutive sweeps. This mode of evolution is also referred to
as periodic selection (Atwood et al. 1951) (which is somewhat
misleading, because no time dependence of selection is im-
plied). A given system can cross over from periodic selection
to clonal interference if its population size, its mutation rate,
or the time dependence of selection is increased; the depen-
dence on population size has been observed in recent evolu-
tion experiments (Perfeito et al. 2007; Miller et al. 2011).
Figure 1 contrasts the two modes of evolution by simulations
of influenza-like strain trees (the model used for the simula-
tions is explained in detail below). Our genomic analysis pro-
vides evidence that the actual evolutionary process of influenza
is governed by clonal interference and, thus, generates more
beneficial mutations than episodic sweeps.

Our analysis proceeds in several steps. First, we show that
the HA1 domain of influenza evolves under almost complete
genetic linkage, which can be quantified by allele frequency
correlations between polymorphic sequence sites. Second, we
provide a quantitative analysis of influenza’s recurrent se-
lective sweeps. This pattern manifests itself in a number of
characteristics: nucleotides fix in temporal clusters, dips in
sequence diversity are correlated with these clusters, and life-
times to fixation follow a similar distribution for different clas-
ses of polymorphisms. The sweep pattern is consistent with
previous results on punctuated antigenic evolution (Smith
et al. 2004) and on clustering of amino acid fixations (Plotkin
et al. 2002; Wolf et al. 2006; Shih et al. 2007). Our results for
neutral polymorphisms, in particular, show that hitchhiking
effects are strong, in contrast to a previous analysis based on
only nonsynonymous polymorphisms (Shih et al. 2007). In the
third and central part of the article, we provide evidence that
influenza evolves under a sufficiently high supply of beneficial
mutations to trigger clonal interference: on average, more
than one beneficial mutation that has overcome genetic drift
is present in the population. We use a new frequency propa-
gator method to infer selection from polymorphism time se-
ries, which is applicable to recurrent selective sweeps in linked
genomes. Our analysis shows that the influenza strain tree
emerges from a particular coalescent process under positive
selection. The inference of clonal interference by the propaga-
tor method is corroborated by a minimal model for influenza
genome evolution, which reproduces the characteristics of
polymorphism time series observed for influenza. In the final
part, we use this evolutionary model to derive consequences
of clonal interference for biological functions of the influenza
A virus, and we discuss how this mode of evolution may arise
from the underlying host–pathogen immune interactions.

Results

Evolution under genetic linkage

Our study is based on a sequence sample of 1971 influenza
A (H3N2) strains occurring between 1969 and 2007 (Bao
et al. 2008). We build an ensemble of equiprobable strain
trees from these sequences by maximum parsimony; a typical
tree is shown in Supporting Information, Figure S1. Each
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unique HA1 sequence observed in a given year is repre-
sented by an external node; unobserved strains are repre-
sented by internal nodes. The trees predict sequence and
year of internal nodes and map point mutations between
directly related strains onto specific branches (see Figure
S1). A sequence clone is uniquely associated with a subtree
and is distinguished from its background by the mutations
that are mapped onto the branch to its common ancestor.
Here, we use strain trees to estimate yearly population fre-
quencies of clones and of the mutations they carry. Details of
strain selection, tree construction, and strain frequency es-
timation are given in File S1; a list of the strains used in this
study appears in File S2.

As a first step of the analysis, we evaluate the amount of
genetic association (linkage disequilibrium) within the HA1
domain. Although strong association is to be expected for
an asexually reproducing virus, its actual degree requires
analysis. This is because the high mutation rate of influenza
sometimes causes the same mutation to originate indepen-
dently in coexisting clones (Shih et al. 2007; Kryazhimskiy
et al. 2008), an effect reducing genetic association even in
the absence of recombination. We evaluate HA1 haplotypes
containing mutant alleles at pairs of simultaneously poly-
morphic sequence sites. For a given pair, we compare the
double-mutant haplotype frequency x12 with the (marginal)

frequencies x1 and x2 of the single-nucleotide mutant alleles
at site 1 and 2 (for details, see File S1). Figure 2 and Figure
S3 show scaled haplotype frequencies y12 [ x12=minðx1; x2Þ
for pairs of simultaneous polymorphisms in different muta-
tion classes of the HA1 domain. In the vast majority of cases,
we find values y12 = 0 or y12 = 1, which is indicative of
complete genetic association of the mutant alleles. We mea-
sure the degree of association for a given pair of mutations
by the allele frequency correlation

Cðx12; x1; x2Þ ¼ Dðx12; x1; x2Þ
Dðj12; x1; x2Þ

; (1)

whereD(x12, x1, x2)[ x12 2 x1x2 is the linkage disequilibrium
and j12 is the maximal or minimal double-mutant haplotype
frequency consistent with given allele frequencies; i.e., j12 =
min(x1, x2) if x12 $ x1x2 and j12 = 0 if x12 , x1x2. The mini-
mum value C = 0 indicates statistical independence of the two
polymorphisms (i.e., linkage equilibrium, x12 = x1x2), the
maximum C = 1 complete genetic association between
the mutant alleles (i.e., x12 = min(x1, x2) or x12 = 0). Com-
pared to the familiar D9 (Lewontin 1964), the allele frequency
correlation C is a stricter measure of association, which is
appropriate for the analysis of haplotypes on influenza strain
trees (for details, see File S1). For pairs of HA1 sequence

Figure 1 Modes of evolution under linkage: Clonal interference vs. episodic selective sweeps. The figure shows strain trees of the influenza evolution
model (see text). Nodes of the tree represent strains with distinct HA sequences. Mutations are mapped on individual branches of the tree, all fixed
changes appear on the trunk of the tree (thick line). For each node, the horizontal coordinate D counts the number of mutations from the root to its
strain sequence, and the vertical coordinate F is the sum of their selection coefficients (the so-called cumulative fitness flux (Mustonen and Lässig 2007,
2009, 2010)). Upward (green) and downward (red) arrows indicate individual branches with positive and negative fitness flux, respectively. (A) Clonal
interference. In this mode, high supply of beneficial mutations generates competition between coexisting clones: many beneficial changes reach
substantial frequencies, but only a fraction of them are fixed (thick green arrows on the trunk), while others are eventually outcompeted (thin green
arrows off the trunk). Neutral evolution (represented by planar subtrees) occurs for limited periods within subpopulations. (B) Episodic sweeps. In this
mode, low supply of beneficial mutations generates selective sweeps interspersed with extended periods of neutral evolution. Interference interactions
are negligible; i.e., all beneficial mutations reaching substantial frequencies are fixed (all green arrows are on the trunk). We show that the evolution of
influenza A (H3N2) is governed by clonal interference and not by episodic sweeps; see text and Figure 4.
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polymorphisms, we find an average frequency correlation
�C ¼ 0:96 (for details, see Figure 2 and Figure S3). Further-
more, we do not find any dependence of �C on the distance
between sequence sites, which indicates that the small devia-
tions from complete association are generated by indepen-
dent originations of the same point mutation in competing
clones and not by recombination of alleles between sites.
Such multiple originations can be observed for some alleles
(Figure 2 and Figure S3), but their effect is too weak to re-
duce frequency correlations significantly. This result implies
that selection acts on genotypes and not on individual muta-
tions, which is a prerequisite for clonal interference (Neher
and Shraiman 2009).

Recurrent selective sweeps

To understand how linkage affects the evolution of in-
fluenza hemagglutinin, we record the histories of all single-
nucleotide polymorphisms in the sequence sample, starting
with the entry of a new allele into the population and
ending with fixation or loss of that allele. We classify these
polymorphisms according to their sequence position: non-
synonymous epitope changes, nonsynonymous changes out-
side the epitopes, and synonymous changes. This rather
broad classification of genomic changes reflects the aim of
this study, which is to derive influenza’s mode of evolution
and its selective cause, but not the role of individual codons
or amino acid changes in this process. Without too much
biophysical a priori information, our analysis will produce
a quantitative inference of heterogeneous selection in the
HA1 domain: nonsynonymous epitope changes are predom-

inantly under positive selection, nonsynonymous changes
outside the epitopes are predominantly under negative se-
lection, and synonymous changes evolve near neutrality.
This inference is in accordance with a number of previous
studies (Bush et al. 1999; Plotkin et al. 2002; Wolf et al.
2006; Bhatt et al. 2011) and will be detailed in the next
section. We first discuss the genomic evidence that influenza
evolves by recurrent selective sweeps, a pattern that is con-
sistent with clonal interference:

Nucleotides fix in temporal clusters: Figure 3A shows the
fixation year for all 160 fixed HA1 polymorphisms. The
resulting distribution of the number of yearly fixations devi-
ates strongly from the form expected for independently
evolving sites, i.e., a Poisson distribution with the same
mean value of 4.1 substitutions per year (dashed line). This
deviation defines the amount of clustering, that is, the ac-
cumulation of fixation events in some years and the corre-
sponding depletion in others. It can be measured by the ratio
of variance and mean of yearly fixation numbers; we find
a ratio of 6.7 in the data, which is much larger than the
range 1 6 0.25 for a finite sample of Poisson-distributed
values. Defining a fixation cluster as a period with at least
eight nucleotide fixations per year in the HA1 domain, we
obtain a total of eight major clusters, which are marked by
dashed lines in Figure 3A. This definition of fixation clusters
is clearly not unique, but our conclusions are robust under
variations of the threshold number of fixations. The fixation
clusters cover 24% of the time span, but contain .64% of
fixations in each of the three polymorphism classes. In par-
ticular, the clustering of (near-neutral) synonymous changes
signals pervasive hitchhiking in selective sweeps. Nonsynon-
ymous non-epitope substitutions still occur preferentially in
these clusters, although their number is reduced by negative
selection (see below). The observed clustering of epitope
amino acid fixations is not stronger than that of neutral
changes. Hence, it can also be explained by hitchhiking,
but intra-epitope fitness interactions are likely to contribute
to this effect (Shih et al. 2007; Kryazhimskiy et al. 2011).

Dips in sequence diversity correlate with fixation clusters:
Figure 3B shows the yearly diversity in all three polymor-
phism classes. There are recurrent dips in sequence diversity,
which occur close in time to the fixation clusters (dashed
lines). These dips have also been associated with antigenic
cluster transitions (Smith et al. 2004). A dip occurs when
beneficial alleles in a successful clone remove the ancestral
sequence diversity in competing clones; the subsequent re-
bound of diversity is caused by new mutations within the
successful clone. The minimum diversity is observed when
a sweep has driven most competing ancestor strains to low
frequency. This occurs sometimes 1 year before the fixation
cluster, which marks the extinction of all but one of these
clones. A closer look at the strain tree reveals a complex
sweep dynamics. A single, putatively beneficial epitope al-
lele is often observed to originate and rise to intermediate

Figure 2 Genetic linkage in the influenza HA1 domain. For pairs of
mutations with haplotype frequency x12 and marginal (allele) frequencies
x1 and x2, the scaled haplotype frequency y12 = x12/min(x1, x2) is plotted
against the larger allele frequency, xmax = max(x1, x2). Yearly frequency
data are shown for 934 pairs of nonsynonymous epitope polymorphisms
(1969 green points), which have an average frequency correlation
�C ¼ 0:948. Most points show maximum linkage disequilibrium character-
istic of complete genetic linkage; i.e., y = 1 for polymorphisms in nested
clones and y = 0 for polymorphisms in disjoint clones (these points are
shown with random y values in the interval (1, 1.02) and (20.02, 0),
respectively, to make a larger number of points visible). Some mutations
originate in multiple clones and break complete linkage, as shown by
values 0 , y12 , 1. However, the overall pattern is far from linkage
equilibrium (y12 = xmax, dashed line). Analogous data for other polymor-
phism classes are shown in Figure S3.
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frequencies within two or more disjoint contemporary clones,
a pattern similar to so-called soft selective sweeps (Pennings
and Hermisson 2006). When its frequency reaches one, how-
ever, all but one of these clones have been lost. That is, the
fixation of HA1 alleles always occurs within a single success-
ful clone: ultimately, all sweeps in the influenza HA1 domain

are hard. This dynamics reflects the high rate of beneficial
and deleterious mutations. Clones harbor multiple selected
alleles, which leads to fitness differences even between clones
sharing a given beneficial allele.

Polymorphism lifetimes are similar: Figure 3D shows the
distributions of lifetimes for fixed polymorphisms in all three
classes. The average times are similar, which is consistent
with recurrent selective sweeps. In this mode, fixation times
are determined by the total selection on sweeping clones
rather than by selection coefficients of individual nucleotide
changes. For unlinked sites, nonsynonymous mutations would
have much shorter lifetimes to fixation than synonymous
changes, given their substantial level of (positive or nega-
tive) selection inferred below.

Inference of clonal interference

How many beneficial mutations drive these selective sweeps?
Is their supply sufficient to generate, on average, two or more
coexisting beneficial alleles that have overcome genetic drift
and compete by clonal interference? We now answer this
question by a more detailed analysis of polymorphism his-
tories, which produces quantitative estimates of selection
acting on influenza. The analysis has to address an important
caveat: genetic linkage and interference interactions them-
selves confound the inference of selection, because correla-
tions between polymorphism histories reduce the statistical
differences between sites evolving under selection and neutral
sites. This caveat applies to all standard population-genetic
selection tests based on polymorphism frequency distribu-
tions, as well as to methods based on time-series analysis for
independent loci (Nielsen 2005). Here, we infer selection by
a new method, which is not confounded by clonal interfer-
ence and is robust to sampling biases in our data set. We
define the frequency propagator G(x) as the likelihood that
a new allele appearing in our sequence sample reaches a fre-
quency .x at some later point. We evaluate the ratio

gðxÞ ¼ GðxÞ
G0ðxÞ (2)

of the propagator G(x) for nonsynonymous mutations (ei-
ther within or outside the epitopes) and its counterpart
G0(x) for synonymous changes. In a similar way, we analyze
polymorphisms whose new allele reaches frequencies ex-
ceeding a given threshold x at some intermediate point of
its lifetime but is eventually lost. The likelihood of this pro-
cess is given by the loss propagator H(x), and we define the
propagator ratio

hðxÞ ¼ HðxÞ
H0ðxÞ (3)

for each class of nonsynonymous mutations with respect to
the synonymous reference class.

In the limit x= 1, the propagator ratio g(x) reduces to the
ratio of fixation probabilities g = (d/n)/(d0/n0), where d, d0

Figure 3 Influenza evolves by recurrent selective sweeps. The histories of
160 fixed polymorphisms in the influenza HA1 domain signal recurrent
selective sweeps consistent with clonal interference: (A) Histogram of
fixation years between 1969 and 2007 in three polymorphism classes
(blue, synonymous; red, nonsynonymous non-epitope; green, nonsynon-
ymous epitope). About 70% of all fixations occur in eight major fixation
clusters containing eight or more mutations (columns reaching above
shaded area, dashed lines). (B) Sequence diversity vs. year of occurrence,
contributions of the three polymorphism classes (blue, red, and green
line), and total divergence (black line). Dips in diversity are correlated with
major fixation clusters. Diversity is measured by the expected number of
pairwise nucleotide differences per unit sequence length between strains of
the same year. (C) Histogram of the number of yearly nucleotide fixation
events (bars); major fixation clusters are highlighted (light bars). The data
distribution deviates strongly from a Poisson distribution with the same
mean value of 4.1 substitutions per year (dashed line). (D) Histogram of
polymorphism lifetimes between entry and fixation of the new allele. The
corresponding normalized distributions are similar in all three mutation
classes, with average lifetimes between 2.9 years and 3.1 years.
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are the numbers of fixed polymorphisms and n, n0 are the
total numbers of polymorphisms in the two mutation clas-
ses. Hence, g is a history-based measure of selection that is
conceptually and computationally related to the McDonald–
Kreitman test of selection (McDonald and Kreitman 1991). At
the same time, the propagator method fundamentally differs
from the popular Dn/Ds test (Li et al. 1985), which has been
used in previous influenza studies (Bush et al. 1999; Wolf
et al. 2006). The Dn/Ds test is often used on phylogenetic
trees across species, where it counts nonsynonymous and
synonymous substitutions on individual branches. The influ-
enza tree, however, is a genealogical tree, which describes the
coalescence process between strains under selection. If ap-
plied to a genealogical tree, the Dn/Ds test counts originations
of nonsynonymous and synonymous polymorphisms, which
provide only a dilute signal of selection. The propagator
method, however, is based on entire polymorphism histories,
which include frequency and time information. This is related
to an intuitive picture of the method, which we discuss below:
propagators not only count mutations, but evaluate their po-
sition on the strain tree.

Propagator ratios are insensitive to uncertainties in entry
frequency and timing of polymorphism histories, as well as to
frequency-dependent bias in polymorphism numbers, as long
as this bias does not depend on mutation class (see File S1).
Most importantly, the propagator method measures selection
in a way not confounded by clonal interference. In particular,
a propagator ratio g , 1 signals evolutionary constraint, from
which we infer that at least a fraction (1 2 g) of the non-
synonymous changes are under negative selection. Similarly,
a propagator ratio g . 1 signals an increase in substitution
probability of nonsynonymous over synonymous mutations,
from which we infer that at least a fraction (g 2 1)/g of the
nonsynonymous changes are beneficial (McDonald and Kreit-
man 1991; Smith and Eyre-Walker 2002). These standard
estimates of constraint and adaptation become more stringent
under conditions of genetic linkage. Clonal interference
implies the existence of a characteristic selection strength ~s,
such that mutations with selection coefficient s. ~s are
mostly driving mutations (i.e., independent of interference)
and mutations with s, ~s are mostly passenger mutations
(i.e., subject to interference). Moderately beneficial or del-
eterious passenger mutations (with selection coefficients
2~s,s, ~s) are reduced to near-neutral fixation probabil-
ities, and only strongly deleterious mutations (with s, ~s)
are under significant evolutionary constraint (Schiffels et al.
2011). Hence, the above tests infer the fraction of strongly
beneficial driving mutations and the fraction of strongly del-
eterious passenger mutations, respectively.

Applying the propagator method to the polymorphism
time series of the influenza HA1 data set, we obtain estimates
of heterogeneous selection. For nonsynonymous non-epitope
mutations, we find a strongly reduced fixation probability
(g = 0.3 6 0.15); see Figure 4A. Thus, amino acid changes
outside the epitopes evolve under substantial evolutionary
constraint, indicating that at least 70% of these changes are

under negative selection strong enough to suppress passenger
substitutions. For epitope sites, the propagator method pro-
duces strong evidence of clonal interference:

Multiple beneficial mutations occur simultaneously: Non-
synonymous epitope mutations have a substantially in-
creased fixation probability (g = 2.3 6 0.6); see Figure
4A. Hence, of the 80 epitope amino acid substitutions, only
a fraction 80/g = 35 would be expected under neutrality,
and at least 80(g 2 1)/g = 45 are strongly beneficial muta-
tions driving adaptation. A similar number of beneficial sub-
stitutions has recently been estimated by Bhatt et al. (2011).
Given a mean lifetime to fixation of 2.9 years as shown in
Figure 3C, we conclude that the population contains at least
three simultaneous adaptive mutations on average. This
supply is too high for sequential fixation by episodic sweeps,
but is consistent with clonal interference. Temporally over-
lapping beneficial mutations reinforce each other if they
occur in nested clones, and they compete with each other
if they occur in disjoint clones (Schiffels et al. 2011; Good
et al. 2012). Clonal interference implies that beneficial
mutations are always present in the population and not just
in cluster years, as assumed in the scenario of episodic
sweeps (Koelle et al. 2006; Wolf et al. 2006; Koelle et al.
2010). It is their fixation events that are clustered: assuming
that every epitope change is equally likely to be adaptive, we
infer at least 29 driving mutations among the 51 epitope
changes contained in the 8 major sweep fixation clusters
(Figure 3A, dashed lines). Hence, a given sweep involves
an average of 3.6 driving mutations.

For nonsynonymous epitope mutations at intermediate
frequencies, we infer an even higher number of beneficial
changes. The above estimate for the fraction of beneficial
changes is not limited to substitutions (x = 1), but can be
applied also at intermediate frequencies x. Given 118 ob-
served epitope amino acid changes at frequency x = 0.7
and a propagator ratio g(0.7) = 2.15, we infer that at least
118[g(0.7) 2 1]/g(0.7) = 63 of these changes are benefi-
cial. Importantly, this number is higher than the 45 beneficial
epitope substitutions. This implies that at least 18 beneficial
epitope changes are lost after they have reached frequencies
x . 0.7, providing evidence of clonal interference. We note
that all of these mutations have overcome genetic drift and
would fix deterministically in the absence of clonal interfer-
ence, because the inferred level of selection is strong compared
to genetic drift. From our model-based analysis described be-
low, we estimate products of selection coefficient and effective
population size of order 100, so that only mutations with fre-
quencies x , 0.01 are dominated by genetic drift.

Beneficial mutations are outcompeted: The frequency de-
pendence of loss propagators provides the most direct
evidence of clonal interference. The loss propagator ratio for
epitope sites shown in Figure 4B takes values h(x) . 1 for
intermediate frequencies, signaling positive selection acting on
lost mutations. The mutations in this class reach intermediate
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frequencies with probability higher than synonymous cha-
nges, before they are interfered with by a stronger competing
clone. With a loss propagator ratio h(0.7)� 2, at least half the
of changes that reach frequency x = 0.7 and are subsequently
lost are inferred to be beneficial. As we discuss below, our
inference of clonal interference is consistent with the under-
lying mechanisms of immune selection.

Clonal interference is global: In agreement with previous
studies (Rambaut et al. 2008; Russell et al. 2008), we find
strains with similar HA1 sequences occurring in the same
year to be distributed over different geographical regions
(see Figure S4). Migration of strains and occasional multiple
originations may contribute to this mixing, which implies
that the competition between strains takes place on a global
scale. However, given the existence of a source population
(Rambaut et al. 2008; Russell et al. 2008), this competition
may well be fiercest in that population and some strains may
be driven to extinction before migrating to other regions.

A minimal model of influenza evolution

Further insight into influenza’s mode of evolution can be
gained by comparing these population-genetic data to simu-
lated evolution of a population of nonrecombining sequences.
In contrast to previous model-based studies of influenza’s
epidemiological and spatial dynamics (Ferguson et al. 2003;
Gog et al. 2003; Tria et al. 2005; Koelle et al. 2006; Strelkowa

2006; Fraser et al. 2009; Pybus and Rambaut 2009), we focus
on genome evolution under mutations, genetic drift, and
a minimal model of selection: (i) non-epitope sites have
time-independent selection coefficients, so that most new
mutations there are under negative selection, and (ii) epitope
sites have selection with time-dependent direction: the pre-
ferred allele at any of these sites changes stochastically with
a given rate, opening windows of positive selection and setting
the supply of new beneficial mutations (Mustonen and Lässig
2007, 2008, 2009; Schiffels et al. 2011). The time dependence
of selection describes the emergence of new beneficial epito-
pes resulting from immune escape, as well as selection
changes due to reassortment with other genome segments
(Holmes et al. 2005; Rambaut et al. 2008). Our minimal
model is simpler than the actual process in two ways: the
fitness of a strain is an additive function of its epitope and
non-epitope alleles, and most selection coefficients at individ-
ual sites are constant over polymorphism lifetimes. The model
does not introduce the epistatic interactions and the popula-
tion history dependence of immune selection, so as to display
the coupling of sequence sites by genetic linkage alone and to
be independent of specific immune interaction mechanisms
between strains (see Discussion). This is in tune with the scope
of our simulations, which is to corroborate the inference of
clonal interference, to contrast it with other modes of adap-
tion, and to explore its biological consequences. Details of our
model and simulations are described in File S1.

Figure 4 Inference of selection and clonal interference
from polymorphism time series. The frequency propagator
statistics g(x) and h(x), as defined by Equations 2 and 3, are
evaluated for influenza HA1 and compared to simulated
ratios for the minimal sequence evolution model. (A) In-
fluenza frequency propagator ratio g(x) for nonsynony-
mous non-epitope and epitope mutations (red and green
diamonds, error bars are given by sampling fluctuations)
with respect to the baseline of synonymous changes (blue
line). These data are plotted together with simulations of
g(x) for the minimal model in the clonal interference mode
(red and green circles); cf. Figure 1A. In the influenza data,
the epitope frequency propagator ratio takes values g(x).
2 for x . 0.6, signaling predominantly positive selection.
For non-epitope sites, g(x) , 1 indicates predominantly
negative selection. Both features of the influenza data
are reproduced by the model results. (B) Influenza loss
propagator ratio h(x) for nonsynonymous non-epitope
and epitope mutations (red and green diamonds), plotted
together with simulations of h(x) for the minimal model in
the clonal interference mode (red and green circles). The
epitope loss propagator ratio takes values h(x) . 1 for x .
0.3, signaling positive selection acting on mutations har-
bored in outcompeted clones. This is again reproduced by
the model results. (C) Simulations of g(x) in the mode of
episodic sweeps (red and green open circles); cf. Figure 1B.
The form of g(x) does not match the influenza data (dia-
monds, same as in A). In the model dynamics, g(x) , 1 for

epitope mutations signals a low rate of adaptation. (D) Simulations of h(x) in the mode of episodic sweeps (red and green open circles). The form of h(x)
does not match the influenza data (diamonds, same as in B). In the model dynamics, h(x) , 1 for epitope mutations signals the absence of interference
interactions. Model parameters: sequence length Lep = 120 (epitope sites), Lne = 160 (non-epitope sites), mutation rate m = 5.8 · 1023/year, average
scaled selection strength �sN ¼ 100, selection flip rates g = 3.3 · 1022/year (clonal interference), and g = 3.6 · 1023/year (episodic sweeps). For model
and simulation details, see File S1. Comparisons with further control models are shown in Figure S7.
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The minimal clonal-interference model reproduces the
influenza data: The minimal model dynamics depends on
mutation rate, sequence length, strength and flip rate of
selection, and population size. To calibrate the model with
the actual process, we set mutation rate and sequence
length to influenza values, and we fit the remaining three
parameters by matching sequence diversity and epitope and
non-epitope substitution rates. The calibrated model shows
that selection on influenza is strong compared to genetic
drift (with products of average selection coefficient and
effective population size of order 100) and dynamic (an
average epitope codon changes its preferred allele about
every 30 years). In this regime, high supply of new beneficial
epitope mutations generates clonal interference, as shown in
Figure 1A. Beneficial mutations arise in different subpopu-
lations after limited waiting times, and these changes com-
pete for fixation. Clonal interference produces a dense
pattern of selective sweeps, which are marked by clusters
of nucleotide fixations. Despite its simplicity and few fit
parameters, the calibrated minimal model matches several
distinct characteristics of the influenza data set. These in-
clude the general pattern of recurrent selective sweeps, such
as the shape of the strain tree and the strongly non-Poisso-
nian distribution of yearly fixation numbers; see Figure S1,
Figure S5, and Figure S6. Importantly, the model also repro-
duces the functional dependence of the propagator ratios: at
intermediate frequencies, g(x) saturates to values signifi-
cantly .1 and h(x) raises to peak values significantly .1;
see Figure 4, A and B. These ratios are specific markers of
clonal interference, as shown by the control models dis-
cussed below. We conclude that clonal interference is a par-
simonious explanation of these data.

Clonal interference is compatible with epistasis: The
biophysics of host–pathogen protein interactions generates
a fitness landscape with epistasis between epitope changes,
which is more complicated than our minimal model. Al-
though single epitope mutations with large antigenic effect
have been reported (Smith et al. 2004), combinations of
several amino acid changes may often be required to pro-
duce new beneficial epitope variants (Rimmelzwaan et al.
2005; Koelle et al. 2006; Shih et al. 2007; Kryazhimskiy et al.
2011). Clonal interference is compatible with epistatic fit-
ness landscapes, as long as the evolutionary process produ-
ces a sufficient supply of new beneficial mutations. In
our minimal influenza model, the effects of epistasis are
captured in an approximate way by selection flips at indi-
vidual genomic sites. Given that the minimal clonal interfer-
ence model matches the influenza data, we do not attempt
to fit these data to an extended model with explicit immune
interactions. Any such model would involve several more fit
parameters compared to the minimal model and, thus, add
little statistical significance to the analysis. Our results raise
an important caveat for the analysis of evolutionary corre-
lations between epitope sites: any inference of epistasis must
carefully discount the effects of genetic linkage.

Control models without clonal interference do not match
the influenza data: To test the specificity of our derivation
of clonal interference, we introduce control models without
clonal interference and show that they are incompatible
with the influenza propagator ratios. The minimal model
with a lower rate of epitope selection flips is shown in Figure
1B. In this regime, a low supply of new beneficial epitope
mutations generates episodic selective sweeps, such that
waiting periods between sweeps are longer than the fixation
time of each individual sweep. We obtain propagator ratios
g(x) , 1 and h(x) , 1, which are clearly incompatible with
the influenza data; see Figure 4, C and D.

To test whether epistasis can produce a spurious signal of
clonal interference in the propagator statistics, we introduce
an escape mutant model, details of which are given in
File S1. This model has strong synergistic epistasis, as ex-
pected for epitope adaptation (Ferguson et al. 2003; Gog
et al. 2003; Tria et al. 2005; Koelle et al. 2006; Shih et al.
2007; Minayev and Ferguson 2009; Koelle et al. 2010;
Kryazhimskiy et al. 2011). There is a parameter regime of
episodic sweeps, which are interspersed with extended neu-
tral search processes in epitope sequence space. In this re-
gime, we find generic epitope propagator ratios g(x)� 1 and
h(x) � 1; see Figure S7, C and D. Thus, simple epistasis
without clonal interference cannot explain the influenza
data.

For completeness, Figure S7, E and F, shows propagator
ratios for independent sites evolving under positive or
negative directional selection. This case can be solved ana-
lytically and serves as a useful illustration of the propagator
method (see File S1). Depending on the sign of selection,
the propagator ratio g(x) increases or decreases without
saturation. The loss propagator ratio h(x) is always ,1,
reflecting the absence of interference interactions.

Our analysis shows that quantitative statistics of the
punctuated sweep pattern and of polymorphism time
series produces quite specific tests for models for influenza
evolution and, in particular, for clonal interference. Prop-
agator ratios, in particular, are more sensitive to the mode
of evolution than the qualitative shape of strain trees,
which is reproduced by any model with selective sweeps.
Explaining the propagator data in the absence of clonal
interference is likely to require a complicated model with
fine tuning of several parameters, compared to the parsi-
monious explanation by the minimal clonal interference
model.

Biological implications of clonal interference

How does influenza’s adaptive dynamics depend on human
immune challenge and viral genome architecture? In the mo-
del representation, we can probe how this process responds
to changes of its input parameters and derive consequences
of clonal interference for viral functions. To characterize the
efficiency of the adaptive process, we use two quantities:

i. The degree of adaptation is defined by
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a ¼ F2 F0
Fmax2 F0

; (4)

where F is the mean Malthusian population fitness, Fmax is
the fitness of a maximally adapted genotype (which car-
ries the preferred nucleotide at all sites), and F0 is the
average fitness of random genotypes (which would arise
from neutral evolution) (Mustonen and Lässig 2007).
Hence, 1 2 a is a normalized measure of genetic load.
We separately evaluate the degree of adaptation for epi-
tope sequence, aep, and for non-epitope sequence, ane.

ii. The speed of adaptation is measured by the mean fitness flux

f ¼ UepSep; (5)

where Uep is the rate and Sep the average selection co-
efficient of epitope substitutions (Mustonen and Lässig
2007, 2009, 2010). The mean fitness flux u is the time
derivative of the cumulative fitness flux F(t), averaged
over the strains in a population and over time; cf. Figure 1.

Our model predicts response patterns highlighting the
interference of epitope and linked non-epitope loci with
each other’s evolution and function:

Functionality decreases with increasing rate of immune
challenge: Clonal interference limits functionality and speed
of adaptation, because beneficial mutations are continuously
lost in the competition between strains (Gerrish and Lenski
1998). But it also limits the functionality of linked non-epitope
loci by hitchhiking of deleterious mutations within sweeps.
Both effects increase with increasing flip rate of epitope selec-
tion, leading to decrease of aep and ane and sublinear increase
of u, as shown in Figure 5A. For example, the load on non-
epitope sites, 1 2 ane, is an order of magnitude higher at
influenza parameters than in the regime of episodic sweeps.
These results suggest that an increase in immune challenge
would strongly compromise the viability of influenza.

Functionality decreases with increasing genome size:
Linked non-epitope loci limit epitope functionality and
speed of adaptation by background selection (Kaiser and
Charlesworth 2009), even if these loci have no functional
connection to the adaptive process (as in our model). This
effect increases proportionally to the length of linked non-
epitope sequence, leading to decrease of aep and u, as
shown in Figure 5B. Indeed, the influenza genome is parti-
tioned into short segments of linked sequence, suggesting
that this genome architecture may have evolved partly to
reduce the deleterious effects of background selection by
reassortment between segments.

Discussion

As we have shown here, population-genetic analysis of time-
dependent strain data opens a new avenue to understand
influenza. We infer fitness and genetic constraints as deter-

minants of adaptive evolution, and we predict speed and
functional consequences of this process. We find that in-
fluenza evolves by clonal interference. That is, its adaptation
is limited not by the supply of beneficial mutations, but by
their competition. This mode of evolution explains the
observed pattern of recurrent selective sweeps with clustering
of nucleotide fixations in the viral hemagglutinin genome.
Clonal interference is generated by genetic linkage and high
supply of beneficial mutations. It is compatible with, but does
not depend on, epistasis between antigenic epitope changes.

Frequency propagators measure adaptation
and interference

Our main result rests on a new inference method for adaptive
evolution in asexual populations, which uses polymorphism

Figure 5 Genome functionality and speed of adaptation. The degree of
adaptation, a, characterizes the functionality of a gene segment; the
mean fitness flux, u, measures the speed of adaptation (Mustonen and
Lässig, 2007, 2009, 2010). (A) Model simulation results for aep (epitope
sites), ane (non-epitope sites), and u are plotted against the selection flip
rate g at epitope sites (solid diamonds, influenza calibration point g =
3.3 · 1022/year; shaded circles, episodic sweeps for g = 3.6 · 1023/year).
All other model parameters are kept fixed to the influenza calibration
point; see Figure 3. There is a g-dependent adaptive genetic load (1 2
aep) on epitope sites and (1 2 ane) on linked non-epitope sites, and the
fitness flux u increases sublinearly with g. (B) The same quantities are
plotted against the non-epitope genome size Lne, with all other model
parameters kept fixed (solid diamonds, influenza calibration point Lne =
120). The epitope genetic load (1 2 aep) increases and the fitness flux u
decreases with increasing length of linked sequence.

Clonal Interference in Influenza 679



frequency time-series data. Two summary statistics of these
time series, the frequency propagator ratio g(x) and the loss
propagator ratio h(x), are defined in Equations 2 and 3 for
classes of mutations under selection compared to a neutral
reference class. We infer clonal interference if two condi-
tions are fulfilled: g(x) . 1 and h(x) . 1 for intermediate
and large frequencies x. The first condition signals predom-
inantly positive selection for a class of mutations, and the
second indicates interference interactions: new beneficial
alleles rise to substantial frequency, but are eventually
driven to loss by a competing clone. Figure 4, A and B,
shows this inference for nonsynonymous mutations in the
influenza HA1 epitopes.

The frequency propagator method has a straightforward
interpretation in terms of the distribution of mutations
on the genealogical tree. The position of a mutation on a
given branch marks the origination of a new allele in the
population. Fixed mutations are mapped onto the trunk of
the tree, lost mutations onto off-trunk branches. In partic-
ular, mutations reaching high intermediate frequencies
before loss originate close to, but not on the trunk. Hence,
the frequency propagator statistics under clonal interference
implies that beneficial mutations are overrepresented, com-
pared to neutral mutations, on the trunk as well as close to
the trunk. This distribution of beneficial mutations can be
understood as a fitness grading of the genealogical tree,
which links influenza evolution and the propagator method
to recent advances in the statistics of coalescent processes
under selection (Brunet et al. 2008) and to directed poly-
mers with quenched disorder (Bolthausen and Sznitman
1998). Because beneficial mutations seed high-fitness clones
that expand in the population, two high-fitness strains sam-
pled from the population at a given point in time have, on
average, a more recent common ancestor than two random
strains. This generates a statistics of adaptive coalescent pro-
cesses, which differs from the familiar neutral coalescent
(Kingman 1982). In particular, coalescence times between
pairs of strains have a a distribution of different shape
(Brunet et al. 2008) and a different overall scale, which is
set by the characteristic sweep time instead of the effective
population size (Schiffels et al. 2011).

Clonal interference and immune selection

The adaptive evolution of influenza is driven by host–
pathogen interactions, which generate cross-immunity
between strains: hosts infected with one strain become par-
tially immune against infection by similar strains. These
interactions lead to natural selection on the viral population,
which has two key characteristics. First, partial escape from
cross-immunity recurrently generates new strains with ben-
eficial mutations, which carry new epidemics. At the same
time, some residual competition between all coexisting
strains maintains a bounded pool of susceptible hosts and
suppresses “speciations” of influenza A into independent lin-
eages. The source of this competition is debated; a possible
mechanism is short-term unspecific immunity (Ferguson

et al. 2003). The inference of clonal interference depends
on both of these selection characteristics and imposes an
additional constraint: in any model of the immune dynam-
ics, compatibility with the genome data requires a rate of
beneficial epitope mutations high enough to generate com-
petition between coexisting mutant strains. Thus, our anal-
ysis addresses an important challenge: to establish a link
between influenza’s epidemiology and genome evolution
(Holmes and Grenfell 2009). This link remains to be devel-
oped further in future work. Our current population-genetic
model does build on a specific host–pathogen mechanism.
Hence, it does not yet explain how beneficial mutations and
a bounded host pool arise.

Influenza’s host–pathogen interactions translate into a
more complex fitness landscape than the simple picture of
directional selection underlying our analysis—a similar
caveat applies to selection inference in just about any wild
population. However, our main result of clonal competition
arises in a natural way from immune interactions. The se-
lective effects of such interactions can be described by a stan-
dard susceptible-infected-recovered (SIR) model. In this
type of model, each viral strain has a fitness (growth rate)
that decreases monotonically with time, reflecting the
buildup of specific host immunity. Hence, an epidemic
caused by a single strain has a characteristic time course,
with numbers of infected host individuals showing an ini-
tially exponential growth followed by a rapid decline. Now
consider a second strain with an epitope mutation that sub-
stantially reduces its specific immunity. At its origination,
this mutant has a positive fitness difference (selection co-
efficient) relative to the first strain. Modeling of the SIR
dynamics shows that the epidemic caused by the mutant
strain and the corresponding buildup of specific immunity
will occur with a time delay relative to the first epidemic
(Lin et al. 2003). In this process, the mutant will in general
remain under positive directional selection and will displace
the first strain in a selective sweep, as observed in the actual
process of influenza (Plotkin et al. 2002). If at most two
strains with different specific immunity coexist at any point
in time, these sweeps are episodic and lead to propagator
ratios g(x) # 1 and h(x) # 1, as shown in Figure 4, C and D,
and Figure S7. If there are frequently three or more such
strains, the SIR model is in the clonal interference regime.
Because all strains have a monotonically declining fitness,
strains originating later are more likely to be positively se-
lected against earlier strains than vice versa. Thus, immune
selection is a mechanism that fuels clonal interference by
producing beneficial mutations.

In the clonal competition regime, all strains rise in
frequency in the population of infected host individuals,
reach a peak value often much smaller than one, and are
subsequently lost. (This should not be confused with the rise
and fall of total population numbers in an epidemic, which
does not require clonal competition.) Alleles at individual
epitope sites behave differently than strains. A mutant allele
is subject to positive or negative interference, depending on
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whether subsequent beneficial mutations occur predomi-
nantly in the mutant lineage or in the ancestral background.
Thus, interference interactions have two effects: epitope
alleles under overall positive directional selection have in-
creased fixation rates; at the same time, some beneficial
epitope alleles are lost. This is signaled by the joint occurrence
of propagator ratios g(x). 1 and h(x). 1, as shown in Figure
4, A and B. It is conceivable that future studies go beyond the
level of alleles and infer more specific characteristics of the
influenza SIR dynamics from genomic data. This will require
a larger and less biased strain sample than available at pres-
ent. At the same time, the specific population genetics of the
SIR fitness landscape will have to be developed.

Interference couples adaptation and conservation

Clonal interference has an important biological consequence: it
tightly couples conservation and adaptation of viral functions
that are encoded in linked genome sequence. Viral fitness
crucially depends on antigenic adaptation, which takes place
primarily by amino acid changes in antigenic epitope sites.
However, it also depends on the conservation of protein
stability and other functional traits, which are encoded in HA
domains outside the epitopes and in other genome segments.
Viral proteins have only marginally stable folds (Tokuriki et al.
2009), which is consistent with the observation that a large
fraction of mutations are deleterious (Sanjuán et al. 2004) and
with the recent inference of specific compensatory mutations
affecting the stability of influenza hemagglutinin (Bloom and
Glassman 2009). The simplest population-genetic model of
stability-changing mutations is a mutation-selection equilib-
rium in a single-step fitness landscape: all protein states with
a free energy below some threshold are viable folds, and all
others are lethal (Zeldovich et al. 2007; Bloom and Glassman
2009). This model has recently been extended to continuous-
fitness landscapes (Wylie and Shakhnovich 2011). Our analy-
sis affects the population genetics of protein stability in two
ways. First, we observe few nonsynonymous substitutions out-
side epitope sites, but a substantial number of polymorphisms
at intermediate frequencies. This suggests that the dependence
of fitness on free energy is described by a smooth landscape in
which the deleterious effects of many non-epitope mutations
are comparable in magnitude to the beneficial effects of epi-
tope changes. Second, clonal interference drives the distribu-
tion of protein stabilities in the viral population far off
equilibrium, because the frequencies of deleterious changes
are enhanced by hitchhiking with beneficial changes in adap-
tive phenotypes (see Figure 5). Hence, our analysis predicts
that fast-adapting viral proteins, in particular hemagglutinin,
are more brittle than influenza proteins under less adaptive
pressure. A similar argument links the adaptive process with
other functional traits under stabilizing selection: clonal inter-
ference generates adaptive genetic load on conserved functions
encoded in linked sequence.

The coupling between adaptation and conservation
should be understood as a two-way effect. Not only are
protein structure and other viral functions degraded by

hitchhiking, the adaptive process itself is compromised by
background selection in linked non-epitope sequence (see
also Figure 5). Both deleterious effects increase with the
length of linked genome segments. This introduces a selec-
tion pressure for short genome segments, which may help to
explain influenza’s genome architecture.

Together, our results imply that the course of influenza
evolution is determined not only by antigenic changes.
Successful viral strains are those that maximize the total
fitness of antigen–antibody interactions and of other viral
functions by a joint process of adaptation and conservation.
Thus, while antigenic adaptation has been a focus of influ-
enza research so far, this study suggests that we need to
broaden our picture of viral function and fitness.
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Here, we describe the influenza sequence dataset (Section 1), the reconstruction of strain trees from these
data (Section 2), the estimation of population frequencies (Section 3), additional features of the propagator
method (Section 4), and the models of sequence evolution used in this study (Section 5).

1. Sequence data

Our study is based on a dataset of 1971 sequences available from the NCBI database (Bao et. al, 2008).
This dataset is well suited for the history-based inference of selection and evolutionary mode: it contains
160 substitutions in the HA1 domain distributed over a time span of 39 years, which is much larger than
the average polymorphism lifetime of about 3 years; see Fig. 3. This allows for an accurate inference of
substitution rates, whereas datasets with shorter observation periods would involve larger sampling errors
(see Section 4).

The available influenza sequences are clearly not a randomly sampled dataset, which would be ideal for
population-genetic analysis. Known systematic biases in the dataset include:

(i) Yearly variations in sampling depth. Far fewer strains are available for earlier years than for later years.

(ii) Regional variations in sampling depth. In particular, the New York sequence project (Ghedin et al.,
2005) leads to an overrepresentation of US sequences.

(iii) Passage history effects. Egg-cultured strains show additional mutations, which may cause sampling
bias (Bush et al., 2000).

Our analysis addresses these biases as follows:

(i) Pre-processing of the dataset: We include only sequences which contain the full HA1 domain (at least
987 bp) and are annotated by year and location of observation. Lab strains and marked egg isolates
are excluded. Sequences from the New York project (Ghedin et al., 2005) are only partially included:
for each year, we choose a random subset of these sequences, such that the fraction of US sequences is
capped to a maximum percentage. However, we have checked that the propagator statistics does not
change if all New York sequences are included.

(ii) Our conclusions are based on polymorphism time-series at substantial frequencies. For these data,
the assumption of a geographically mixed population is justified. This is shown by Fig. S4, which
confirms the results of previous studies (Rambaut et al., 2008; Russell et al., 2008). Furthermore, these
frequencies are robust to variations of the sampling depth.

(iii) The propagator method is robust to variations in polymorphism entry time and entry frequency, which
are expected to be particularly noisy in our dataset. Furthermore, propagator ratios do not depend
frequency-dependent bias in polymorphism numbers, which can arise from our tree-based inference.
For details, see Section 4.

The NCBI accession numbers of our strain sample are given in File S2. We obtain a gapless alignment
of these sequences using MUSCLE (Edgar, 2004). Within the HA1 domain, we use a subset of codons as
known antigenic epitope sites (Shi et al., 2007).

2 SI N. Strelkowa and M. Lässig



2. Reconstruction of strain trees

Tree structure and statistics. Our analysis of polymorphism histories is based on an ensemble of strain
trees obtained from the HA1 sequence dataset. Such trees describe the genealogy of influenza strains resulting
from a coalescent process under selection (Rosenberg and Nordborg, 2002). The tree ensemble is constructed
with PAUP (Swofford, 2002) using a heuristic procedure to obtain globally optimized maximum-parsimony
trees, which consists of random addition of branches followed by branch swapping. The procedure is used
with an option to bias the mapping of mutations towards earlier years (ACCTRAN), following the proce-
dure of previous studies (Fitch et al., 1997; Kryazhimskiy et al., 2008). Trees are rooted using the strain
A/Bilthofen/16190/68 (NCBI accession number AY661039), which is closest to the avian outgroup of the
HA1 domain (Smith et al, 2004).

In these trees, each node corresponds to a unique HA1 sequence in a given year, and each observed strain
is mapped onto exactly one external node. Strains with the same HA1 sequence observed in the same year are
mapped onto the same external node, and we count their number as multiplicity m of the node. Strains with
the same HA1 sequence observed in different years are mapped onto different external nodes. A strain with
descendants is represented by an external node and its internal father node, to which these descendants are
linked (i.e., these two nodes have identical sequences). The remaining internal nodes represent unobserved
sequences inferred by maximum parsimony.

Our tree statistics is built from 10 PAUP runs differing in the order of sequences added; each run produces
100 equiprobable trees. Variation between the trees occurs only on peripheral branches; the large-scale tree
structure and the tree-based statistical observables are well conserved. Statistical errors in our tree-based
selection inference are discussed in detail in Section 4.

An example of a maximum-parsimony tree is shown in Fig. S1. The overall consistency of the tree
reconstruction procedure is supported by the correct timing of the observed strains (Fitch et al., 1997).

Mapping of mutations. Maximum parsimony maps point mutations between directly related strains onto
the branches of the tree. A mutation on a given branch marks an origination event of a single nucleotide
polymorphism, i.e., the appearance of a nucleotide difference between the clone of strains descending from the
branch and its ancestral lineage. Fig. S2 shows these originations partitioned in the three classes used in our
analysis: synonymous mutations, nonsynonymous mutations outside the epitope, and nonsynonymous epi-
tope mutations. Tree-based inference can accurately disentangle synonymous and nonsynonymous changes,
which become ambiguous in the raw sequence data if several changes in the same codon are observed in one
year.

Timing of internal nodes. Each tree node is assigned a year of occurence as follows: Nodes representing
observed HA1 sequences are assigned their year of observation, all other nodes are assigned the year for
which the average D value of observed sequences is closest to the D value of the inferred node sequence.
However, if any (external) descendant node occurs in an earlier year, the assigned year of the internal node
is correspondingly advanced. Here D is the mutational distance of a node sequence to the sequence of the
root node, i.e., the number of point mutations in the lineage between the two nodes (which can differ from
their Hamming distance due to double mutations at the same sequence position).

3. Estimation of population frequencies

Strain frequencies. Each node of a timed strain tree is assigned a multiplicity m as approximate measure
of the frequency of its HA1 sequence. For an external node, m is the number of occurrences of its sequence
in the strains sampled in the corresponding year. For an internal node, m is the number of descendant nodes
in the same year differing by a single point mutation in the HA1 sequence, which is seen to correlate well
with population size in model simulations (Strelkowa, 2006).
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Each HA1 sequence a occurring in a given year is assigned a multiplicity ma, which is the sum of the
m values of its (one or two) nodes, and a frequency xa = ma/

∑
bmb with the normalization given by all

sequences b of the same year.

Polymorphism frequencies. The frequency x of a nucleotide allele in a given year is the sum of the
frequencies xa of all sequences in that year which carry the allele. The resulting allele frequency time-series
are qualitatively similar to those of a previous study (Shi et al., 2007). However, our tree-based inference
allows decomposing x into contributions of individual clones, which appear as descendant subtrees of a
unique origination (see next paragraph). Furthermore, the entry point of an allele can be inferred on an
internal node prior to its first observation.

Haplotype frequencies. For any pair of simultaneously polymorphic sequence sites in the HA1 domain,
we consider the four possible haplotypes

(−,−), (a,−), (−, b), (a, b), (S1)

where a is the mutant allele at site 1, b is the mutant allele at site 2, and dashes denote the ancestral alleles.
We compare the frequency x12 of the double-mutant haplotype (a, b) with the (marginal) frequencies x1 and
x2 of the single-nucleotide mutant alleles a and b. To quantify genetic association in the HA1 domain, it is
convenient to decompose these frequencies into clonal components. Assume that allele a has c1 independent
originations on different branches of the strain tree. These define a set of c1 mutually disjoint, but temporally
overlapping clones (i.e., subtrees) carrying the same mutant allele at site 1. In the same way, the mutant
allele b is carried by a set of c2 mutually disjoint clones. The allele frequencies are the sum of the clone
frequencies xα (α = 1, . . . , c1) and xβ (β = 1, . . . , c2) at site 1 and site 2, respectively,

x1 =

c1∑
α=1

xα (S2)

and

x2 =

c2∑
β=1

xβ . (S3)

The double-mutant haplotype frequency is given by

x12 =

c1∑
α=1

c2∑
β=1

xαβ (S4)

with

xαβ =

 xα if clone α is nested in clone β,
xβ if clone β is nested in clone α,
0 if clones α and β are disjoint.

(S5)

We define the mutant alleles a and b to be under complete genetic association if only two of the three mutant
haplotypes (a,−), (−, b), and (a, b) occur in the population. Complete genetic association signals that all
originations of the mutant allele at one site occur on the same sequence background (ancestral or mutant)
of the other site. More specifically, there are three distinct cases leading to complete association: (i) all
originations of allele a occur nested in clones carrying allele b (i.e., x12 = x1 ≤ x2), (ii) all originations of
allele b occur nested in clones carrying allele a (i.e., x12 = x2 ≤ x1), or (iii) all originations of both alleles
occur in disjoint clones (i.e., x12 = 0). Pairs of mutations with unique originations on the tree (c1 = c2 = 1)
are always under complete association. However, if at least one of the mutant alleles has multiple originations
(c1 > 1 or c2 > 1), complete association can be broken, i.e., 0 < x12 < min(x1, x2).
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Fig. S3 shows scaled haplotype frequencies

y12 ≡
x12

min(x1, x2)
(S6)

for pairs of simultaneous polymorphisms in different mutation classes of the HA1 domain. In the vast
majority of cases, we find values y12 = 0 or y12 = 1 indicative of complete genetic association between the
mutant alleles. However, some haplotypes have scaled frequencies 0 < y12 < 1, signaling originations of the
mutant allele at one site on multiple sequence backgrounds at the other site (Shi et al., 2007; Kryazhimskiy
et al., 2008).

Allele frequency correlation. We measure the effects of genetic linkage on the haplotype statistics of
influenza HA1 by the frequency correlation C(x12, x1, x2), which is defined in equation (2) of the main text.
This correlation measures the degree of genetic association between mutant alleles and takes values between
0 and 1. The maximum C = 1 signals that only two of the three mutant haplotypes (a,−), (−, b), and (a, b)
occur in the population, which implies x12 = min(x1, x2) or x12 = 0.

We can compare C with Lewontin’s

D′(x12, x1, x2) ≡ D(x12, x1, x2)

Dmax
, (S7)

where Dmax is the absolute value of the maximum or minimum linkage disequilibrium consistent with given
allele frequencies, i.e., Dmax = min(x1(1−x2)), x2(1−x1)) if x12 ≥ x1x2 and Dmax = min(x1x2, (1−x1)(1−
x2)) if x12 < x1x2 (Lewontin, 1964). This normalized measure of linkage disequilibrium takes values between
−1 and 1. The maximum absolute value |D′| = 1 signals that only three of the four haplotypes (−,−), (a,−),
(−, b), and (a, b) occur in the population. It is easy to show the inequality C ≤ |D′|. As a consequence, our
result of nearly complete genetic association between mutant alleles in the HA1 domain, C̄ = 0.96, implies
an equally strong average linkage disequilibrium in terms of Lewontin’s measure, |D′| ≥ 0.96. We find that
C and |D′| take equal values for most HA1 haplotypes. The key difference between the two measures is
that C distinguishes between ancestral and mutant alleles, which makes it a more specific measure of the
haplotype origination statistics than |D′|. The strict inequality C < |D′| holds if and only if x1 + x2 > 1 and
x12 < x1x2. In particular, if all three mutant haplotypes (a,−), (−, b), and (a, b) occur in the population
but the ancestral haplotype (−,−) has been lost, we obtain C < 1 and |D′| = 1. The correlation C signals
originations on mixed sequence backgrounds, while linkage equilibrium has become extremal by loss of the
ancestral haplotype.

4. Propagator method

Definition of propagators and propagator ratios. In this study, we use frequency propagators of
polymorphism time-series as statistical measures of selection and as markers of clonal interference. The
frequency propagator G(x|xi) is defined as the conditional probability that a polymorphism with frequency
xi at some first point of its history reaches a frequency x > xi at any later point. This observable is easily
estimated from the frequency time-series in our dataset, G(x|xi) = n(x)/n(xi), where n(x) is the number
of polymorphisms that reach frequency x. As a measure of selection, polymorphism histories are most
informative if they are evaluated from their entry points observed in the sample. The resulting frequency
propagator G(x) is the average of G(x|xe) over the distribution of entry frequencies xe in the sample; it is
estimated in the dataset as G(x) = n(x)/n, where n is the total number of polymorphisms. The distribution
of entry frequencies xe depends on the sample size. Typical entry frequencies are quite variable in our
dataset, because fewer data are available for early years. A more robust measure of selection is the ratio of
propagators between a class of nonsynonymous polymorphisms and a neutral reference class of synonymous
polymorphisms,

g(x) =
G(x)

G0(x)
, (S8)

N. Strelkowa and M. Lässig 5 SI



which is largely independent of the entry frequencies, as long as they are sufficiently small (see below).

In a similar way, we evaluate polymorphisms whose new allele reaches frequencies exceeding a given
threshold x at some intermediate point of its lifetime but is eventually lost. The likelihood of this process is
given by the loss propagator H(x) ≡ G(0|x)G(x), and we define the propagator ratio

h(x) =
H(x)

H0(x)
(S9)

with respect to the neutral reference class.

Systematic errors. The propagator method is designed to be applicable to the dataset of this study,
because it is quite robust to various uncertainties and biases in the data:

(i) Propagator ratios are insensitive to variations in polymorphism entry frequencies (see above). Such
variation is generated, for example, because our dataset contains fewer strains from earlier years and
more from later years.

(ii) Propagator ratios are insensitive to frequency-dependent bias in polymorphism numbers n(x), as long
as it does not depend on mutation class. Such bias is generated, for example, by spurious mutations in
egg isolates, which produce an excess number of low-frequency polymorphisms. Furthermore, we choose
a conservative minimum entry frequency xe,min = 0.01, which excludes low-frequency polymorphisms
located primarily on terminal branches of the coalescent tree.

(iii) Propagator ratios do not depend on the precise timing of polymorphism histories. Variations in entry
times are generated, for example, by fluctuations between equiprobable trees.

Statistical errors. Selection inference by the propagator method is subject to two distinct sources of
statistical error:

(i) Sampling fluctuations arise, because the system is observed over a finite period of time and, therefore,
the absolute number of polymorphism histories reaching a given frequency is limited. These fluctuations
turn out to be the dominant source of statistical error for frequency propagators (and prohibit the use
of this method for other datasets with shorter observation spans). The error bars reported in Fig. 4
treat different data points as independent, which leads to an overestimation of sampling errors.

(ii) Fluctuations between equiprobable trees arise from the genealogy reconstruction process. We analyze
these fluctuations using an ensemble of 1000 equiprobable trees obtained for our dataset (see Section
2 above). The resulting statistical errors for frequency propagators are found to be subleading to
sampling errors, showing that our inference is robust to variations between trees.

Frequency propagators for independent sites, low-frequency asymptotics. Here, we analytically
calculate the frequency propagators of an independent two-allele site evolving by mutations, genetic drift,
and constant selection. This serves as an illustration of the propagator method and shows that frequency
propagator ratios are asymptotically independent of entry frequencies.

The expression forG is obtained by generalizing the familiar calculation of the fixation probability (Kimura,
1983): G(x|xi) is the solution of the stationary backward diffusion equation

1

2N

∂2

∂x2i
G+ σ

∂

∂xi
G = 0 (S10)
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with boundary conditions G(x|xi) = 1 and G(x|0) = 0, where σ is the selection coefficient and N is the
effective population size. Defining the scaled selection coefficient s = 2Nσ, the solution reads

G(x|xi) =
1− e−sxi

1− e−sx
. (S11)

For neutral evolution (s = 0), this expression reduces to G0(x|xi) = xi/x.

In the limit xi � 1, the propagator G(x|xi) has a linear asymptotic dependence on xi. Hence, the
propagator G(x), which is defined as the average of G(x|xe) over entry frequencies xe, can be written in the
form

G(x) = G(x|x̄e) +O(x2e), (S12)

where x̄e and x2e are mean and variance of entry frequencies. The ratio of propagators G/G0 becomes
asymptotically independent of entry frequencies in this limit:

G(x)

G0(x)
= g(x) +O(xe). (S13)

From eq. (S11), we obtain

g(x) =
sx

1− e−sx
(S14)

and as a special case the ratio of fixation probabilities

g ≡ g(1) =
s

1− e−s
. (S15)

In the same way, the the ratio of loss propagators becomes asymptotically independent of entry frequencies,

H(x)

H0(x)
≡ G(x)

G0(x)

G(0|x)

G0(0|x)
= h(x) +O(xe), (S16)

where

h(x) =
sx

1− e−sx
1− es(1−x)

1− es
1

1− x
. (S17)

The loss propagator for independent sites has values h(x) < 1 for mutations under positive and under negative
selection. This is because the function H(x) decreases exponentially with increasing x under constant
selection of any direction: alleles under negative selection are unlikely to reach substantial frequencies x,
whereas alleles under positive selection are unlikely to be lost once they have reached such x. As an example,
the functions g(x) and h(x) are plotted in Fig. S7(e,f) for the cases of neutral evolution (s = 0), moderate
negative selection (s = 2Nσ = −6), and moderate positive selection (s = 2Nσ = 6). They are incompatible
with the influenza data, which have g(x) saturating at intermediate frequencies and h(x) > 1 due to clonal
interference.

For linked sites, the propagator ratios g(x) and h(x) differ drastically from the form of eqs. (S14)
and (S17), but they remain asymptotically independent of xe as given by eqs. (S13) and (S16). This reflects
the fact that the low-frequency dynamics of polymorphisms is always dominated by genetic drift.

5. Sequence evolution models

Model dynamics. In this study, we use simple models of sequence evolution under genetic linkage for two
purposes: (i) A minimal model of clonal interference serves to infer evolutionary parameters of influenza’s
adaptive dynamics and to corroborate the propagator-based inference of clonal interference for this process.
(ii) Control models which do not match the influenza data indicate the specificity of our evidence for clonal
interference.
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We consider a model population with a constant number N individuals. In the model dynamics, this
parameter governs the relative importance of genetic drift compared to selection and mutations. We estimate
numerical values of N from observed HA1 sequence diversity, as described below. In the actual evolutionary
process, genetic drift is dominated by extreme bottlenecks during transmission between hosts, which involve
a number of viral particles of order one. Therefore, the model parameter N should be associated with an
effective number of infected hosts (and not with typical numbers of viral particles). Keeping N constant
then reflects the well-known property that influenza A strain diversity does not proliferate and a bounded
pool of susceptible and infected hosts is maintained (modulating N by seasonal changes does not affect our
results).

The population is partitioned into subpopulations of Nβ individuals infected by a given strain; different

strains are distinguished by an index β. Each strain is characterized by its genotype aβ = (aβ1 , . . . , a
β
L),

which is a sequence of length L partitioned into three classes of sites:

aβ = (aβ1 , . . . , a
β
Lep︸ ︷︷ ︸, aβLep+1, . . . , a

β
Lep+Lne︸ ︷︷ ︸, aβLep+Lne+1, . . . , a

β
L︸ ︷︷ ︸)

Lep epitope sites Lne non-epitope sites L− Lep − Lne neutral sites
(S18)

Each sequence site has two nucleotide alleles ai = ±1 (i = 1, . . . , L). The order of epitope, non-epitope, and
neutral sites on the sequence is arbitrary, because genotypes evolve without recombination.

Strain content and population sizes evolve by selection, mutations, and genetic drift:

(i) Selection: In our minimal model, we use an additive, but explicitly time-dependent fitness function

F (a, t) = Fep(a, t) + Fne(a, t) =

L∑
i=1

1

2
σiηi(t) ai. (S19)

Epitope and non-epitope sites have selection coefficients of magnitude σi > 0 independently drawn
from a log-normal distribution with average σ̄ and variance proportional to σ̄ (the emergence of clonal
interference is robust under changes of this distibution (Gerrish and Lenski, 1998)). For epitope sites,
the direction of selection ηi(t) = ±1 fluctuates (Mustonen and Lässig, 2007) according to independent
random processes with rate γ, non-epitope sites have a time-independent direction ηi(t) = 1, and
neutral sites have σi = 0. Over a time interval ∆t, selection generates a deterministic change in
subpopulation sizes,

Nβ(t)→ Z−1(t)Nβ(t) exp[(∆t)F (aβ , t)] (S20)

with the normalization Z(t) =
∑
β Nβ(t) exp[(∆t)F (aβ , t)]/N .

(ii) Mutations: For each strain β, we draw the number of mutant individuals from a Poisson distribution
with mean µL(∆t), choosing the time step ∆t such that this mean is of order 1. Each mutant individual

of strain β acquires a single point mutation aβi → −a
β
i at a randomly chosen site i and, thus, may

belong to another existing strain or seed a new strain.

(iii) Genetic drift: After the selection and mutation steps, we define the population numbers Nβ(t+ ∆t) of
the next generation by multinomial sampling, i.e., each individual is randomly assigned a single parent
individual of the previous generation, which transmits its genotype. As discussed above, this sampling
models the transmission between hosts.

Population observables. Following the evolution process over time, we can measure the following quan-
tities:

(i) Sequence diversity

π(t) ≡ 1

2N2

∑
β<β′

L∑
i=1

Nβ(t)Nβ′(t)
(
1− aβi a

β′

i

)
. (S21)
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(ii) Epitope degree of adaptation

αep(t) =
Fep − Fep,0

Fep,max − Fep,0
=

1

N

∑
β

Nβ(t)
1

σ̄Lep

Lep∑
i=1

σiηi(t) a
β
i , (S22)

where the second equality uses Fep,0 = 0 and Fep,max = 1
2 σ̄Lep.

(iii) Non-epitope degree of adaptation

αne(t) =
Fne − Fne,0

Fne,max − Fne,0
=

1

N

∑
β

Nβ(t)
1

σ̄Lne

Lep+Lne∑
i=Lep+1

σia
β
i . (S23)

(iv) Total substitution rates of epitope and non-epitope sites, Uep and Une.

(v) Epitope fitness flux

φ(t) =
1

N

∑
β,β′

Nββ′(t)

Lep∑
i=1

1

2
σiηi(t)

(
aβ

′

i − a
β
i

)
, (S24)

where Nββ′(t) is the number of individuals mutating from strain β to strain β′ at time step t.

The process reaches a stationary state characterized by time-independent average values πs, αsep, αsne, U
s
ep,

Usne, and φs = UsepΣsep, where Σsep > 0 is the average selection coefficient of epitope substitutions. These
observables depend on the model parameters L, Lep, Lne, σ̄, γ, µ, and N .

Simulation procedures. The simulation is started at time t0 with a population containing a single strain
(β = 1) with a random epitope genotype and a perfectly adapted non-epitope genotype,

a1i =

{
±ηi(t0) for i = 1, . . . , Lep,
1 for i = Lep + 1, . . . , Lep + Lne.

(S25)

This strain has epitope degree of adaptation αep ≈ 0 and non-epitope degree of adaptation αne = 1.

After evolution over a few years, the population reaches a stationary state with stochastic fluctuations.
This state has a few hundred coexisting strains, an adapted epitope (αep > 0), genetic load outside the
epitope (αne < 1), and a finite speed of adaptation (φ > 0), as shown in Fig. 5.

The data of Fig. 4 and of Fig. S7 are obtained by averaging over 10 runs with 400 years of stationary
evolution in each run. The trees of Fig. 1 and Fig. S5 show single runs of stationary evolution, which are
directly comparable to the data tree of Fig. S1. The distribution of yearly fixation numbers shown in Fig. S6
is obtained from 10 runs with 40 years of stationary evolution in each run.

Model parameters, evolutionary regimes. For a given set of model parameters, we record the above
observables in the stationary state of the population dynamics. To compare the minimal model to the
dynamics of influenza, a number of model parameters are chosen equal to their actual values:

(i) The point mutation rate is set to µ = 5.8× 10−3 per nucleotide and year. This value is inferred from
the rate of neutral substitutions in the HA1 domain, confirming the result of a previous study (Fitch
et al., 1999). Clonal interference strongly affects the polymorphism histories of neutral changes, but
not their substitution rate: a new allele which has evolved neutrally up to population frequency x and
is interfered with by a selective sweep, has a probability of fixation equal to x, the same value as for
neutral evolution without the sweep. Hence, the substitution rate of neutral changes remains a measure
of the mutation rate in an individual sequence. In our sample of the influenza HA1 domain, there are

N. Strelkowa and M. Lässig 9 SI



about 75 synonymous substitutions over 39 years, 11 of which occur in the 62 epitope codons and 66
in the 267 non-epitope codons; these numbers are consistent with a uniform point mutation rate across
the HA1 domain and produce the value of µ quoted above.

(ii) The sequence length parameters are set to Lep = 120, corresponding to 60 epitope codons in the HA1
domain, and Lne = 160 corresponding to about 80 codons under moderate negative selection. For
definiteness, this number is chosen equal to the number of non-epitope codons where originations are
observed in the HA1 domain. The actual number of non-epitope codons coupled to the epitope by
linkage is larger. However, the evolutionary observables depend only weakly on Lne (see Fig. 5(b))
and a substantial fraction of non-epitope mutations are expected to be under strong purifying selection
(σ � σ̄), for example, because they cause misfolds. These changes decouple from the clonal interference
dynamics. The model sequences also contain L − Lep − Lne = 300 neutral sites, equal to the number
of codons in the HA1 domain.

With these choices, the minimal model has only three fit parameters: the average strength of selection,
σ̄, the fluctuation rate of selection, γ, and the population size N . We evaluate the model in the following
parameter regimes:

(i) Clonal interference regime. This regime includes the influenza calibration point, which is determined by
fitting the substitution rates Usep, Usne and the diversity πs to the values observed in the actual process.
The fit values should be regarded as order-of-magnitude estimates, because clonal interference flattens
the dependence of the evolutionary process on the population-genetic parameters (Gerrish and Lenski,
1998; Desai and Fisher, 2007). At these parameter values, clonal interference of the model dynamics
manifests itself in a high supply of beneficial mutations at high frequencies (Fig. 4(a)), loss propagator
values h(x) > 1 (Fig. 4(b)), the distribution of beneficial mutations on the strain tree (Fig. 1(a)), and
in a sublinear increase of fitness flux with γ (Fig. 5(a)).

We probe the dependence of the minimal model dynamics on γ and on Lne around the influenza
calibration point γ = 3.3× 10−2/yr, Lne = 160 with all other parameters kept fixed (Fig. 5).

(ii) Episodic sweeps regime. This regime is reached for substantially lower values of γ. The simulations
shown in Figs. 1(b) and 4(c,d) have γ = 3.6×10−3/yr; see also the regime of low γ in Fig. 5(a). Episodic
sweeps are characterized by a low number of beneficial mutations at high frequencies (Fig. 4(c)), loss
propagator values h(x) < 1 (Fig. 4(d)), a distribution of beneficial mutations on the strain tree as
shown in Fig. 1(b), and in a linear increase of fitness flux with γ (Fig. 5(a)).

Epistasis model. Because already the minimal model matches the influenza data, fitting a more compli-
cated model with explicit fitness interactions between epitope sites would add little statistical significance
to our analysis. However, we use a simple epistatic model to verify that such interactions are unlikely to
produce a spurious signal of clonal interference in the frequency propagator statistics. This model describes
neutral searches in epitope sequence space interspersed with selective sweeps triggered by beneficial escape
mutants (Ferguson et. al, 2003; Gog et al., 2003; Tria et al., 2005; Koelle et al., 2006; Minayev and Ferguson,
2009; Koelle et al., 2010). Starting from an initial genotype with fitness F0, new epitope mutations are
neutral with probability 1 − p and lead to a genotype of higher fitness F1 = F0 + σ with probability p (se-
lection coefficients σ are drawn from a distribution as above). Following a sweep triggered by this mutant,
a new search starts, until a second beneficial mutant with fitness F2 = F1 + σ′ occurs, etc. This model
has strong synergistic epistasis: most individual mutations are neutral, and a positive fitness effect requires
in most cases a combination of mutations away from the previous successful mutant. For low values of p,
the model is in a regime of episodic sweeps, i.e., it does not produce clonal interference. In this regime, it
shows propagator ratios g(x) ≈ 1 and h(x) ≈ 1 for epitope sites, which are characteristic of sparse sweeps
and extended neutral evolution of epitope genotypes. These ratios do not match the influenza data; see
Fig. S7(c,d).
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Figure S1: Strain tree of influenza A (H3N2). This sample tree is constructed by maximum parsimony from
coding sequence of the HA1 domain of 1971 strains occurring between 1969 and 2007 (other equiprobable trees differ
only in peripheral branches). The observed HA1 sequences appear as external nodes. The horizontal coordinate D of
a node is its mutational distance from the root of the tree. The trunk of the tree, i.e., the single lineage connecting
past and future on time scales beyond the coalescence time, is marked by a thick line. The year of occurrence of all
sequences (colored dots) is estimated from their D value for inferred sequences on internal nodes (see Methods). The
sequences of a given year are seen to be clustered around their average D value (colored lines), which increases by
about 5.6 mutations per year.
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Figure S2: Tree map of mutations. (a) Synonymous (blue), (b) nonsynonymous non-epitope (red), and (c) non-
synonymous epitope changes (green). Each mutation marks an origination of a new allele in the population; each
fixed allele has an origination on the trunk of the tree (highlighted by bright colors). The fixation probability, i.e., the
ratio of the number of fixations and the number of originations, is seen to be reduced for nonsynonymous non-epitope
changes and enhanced for nonsynonymous epitope changes compared to the baseline of synonymous changes.
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Figure S3: Genetic linkage in the influenza HA1 domain. For pairs of mutations with haplotype frequency
x12 and marginal (allele) frequencies x1 and x2, the scaled haplotype frequency y12 = x12/min(x1, x2) is plotted
against the larger allele frequency, xmax = max(x1, x2). Yearly frequency data for (a) 934 pairs of nonsynonymous
epitope polymorphisms (1969 green points with average frequency correlation C̄ = 0.948), (b) 75 pairs of nonsynony-
mous non-epitope polymorphisms (198 red points, C̄ = 0.987), (c) 2022 pairs of synonymous polymorphisms (4118
blue points, C̄ = 0.964), (d) 450 pairs of a nonsynonymous epitope polymorphism and a nonsynonymous non-epitope
polymorphism (478 green points with larger frequency of the epitope mutant allele, 437 red points with larger fre-
quency of the non-epitope mutant allele, C̄ = 0.957), (e) 2738 pairs of a nonsynonymous epitope polymorphism and a
synonymous polymorphism (2409 green points with larger frequency of the nonsynonymous mutant allele, 3170 blue
points with larger frequency of the synonymous mutant allele, C̄ = 0.955), (f) 723 pairs of a nonsynonymous non-
epitope polymorphism and a synonymous polymorphism (514 red points with larger frequency of the nonsynonymous
mutant allele, 1009 blue points with larger frequency of the synonymous mutant allele, C̄ = 0.973). Most points show
maximum linkage disequilibrium characteristic of complete genetic linkage, i.e., y = 1 for polymorphisms in nested
clones and y = 0 for polymorphisms in disjoint clones (these points are shown with random y values in the interval
(1, 1.02) and (−0.02, 0), respectively, in order to make a larger number of points visible). Some mutations originate
in multiple clones and break complete linkage, as shown by values 0 < y12 < 1. However, the overall pattern is far
from linkage equilibrium (y12 = xmax, dashed lines).
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Figure S4: Geographical mixing vs. temporal differentiation of strains. Left panel: geographical location
of observed strains (red: Asia, green: Australia, blue: North America, cyan: Central and South America, orange:
Europe). The data indicate geographical mixing and confirm the results of previous studies (Rambaut et al., 2008;
Russell et al., 2008): Strains with similar HA1 sequences occurring in the same year are distributed over different
regions. Right panel: Year of occurence of observed strains (colors as in Fig. S1). The data fall into yearly clusters
of increasing mutational distance D to the root node.
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Figure S5: Typical sequence tree of the clonal interference model. The tree is obtained from the evolution
of a single population in the stationary state of the minimal model over a time of 40 years (model parameters at the
influenza calibration point). To be compared with Fig. S1.
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Figure S6: Clustering of fixations in the clonal interference model. Histograms of the number of yearly
nucleotide fixation events (bars) obtained from the minimal evolution model in four simulation runs over 40 years
(model parameters at the influenza calibration point). To be compared with Fig. 3(c). As in the actual process,
these distributions deviate strongly from the Poisson form expected for independently evolving sites (dashed lines).
The simulated distribution obtained from 10 runs has a ratio 5.0± 2.5 of variance and mean (error bars determined
by sampling over a finite number of years). This value is compatible with the corresponding ratio 6.7 for the actual
process, however, both ratios are much larger than the range 1±0.25 for a finite sample of Poisson-distributed fixation
numbers.
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Figure S7: Control models without clonal interference do not match influenza data. (a,c,e) Frequency
propagator ratio g(x) and (b,d,f) loss propagator ratio h(x) as defined in the text. Influenza data as in Fig. 3:
Observed ratios for nonsynonymous non-epitope and epitope mutations (red and green diamonds, with error bars
given by sampling fluctuations) with respect to the baseline of synonymous changes (blue line). The data match none
of the following control models: (a,b) Episodic sweeps regime of the minimal model (red and green empty circles, as
in Fig. 4). (c,d) Episodic sweeps regime of the epistasis model (red and green empty triangles); see Supporting Text,
Section 5. In both models, g(x) ≤ 1 reflects the low rate of adaptive epitope mutations and h(x) ≤ 1 the absence
of clonal competition. (e,f) Independent sites evolving under negative selection or positive selection (red and green
dashed lines, analytical solutions given in Supporting Text, Section 4). In particular, h(x) < 1 reflects the absence of
clonal competition for unlinked sites.


