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Abstract

Background

With increased experimental availability and accuracy of bio-molecular networks, tools for their comparative
and evolutionary analysis are needed. A key component for such studies is the alignment of networks.

Results

We introduce the Bioconductor package GraphAlignment for pairwise alignment of bio-molecular networks.
The alignment incorporates information both from network vertices and network edges and is based on an
explicit evolutionary model, allowing inference of all scoring parameters directly from empirical data. We
compare the performance of our algorithm to an alternative algorithm, Græmlin 2.0.

On simulated data, GraphAlignment outperforms Græmlin 2.0 in several benchmarks except for computational
complexity. When there is little or no noise in the data, GraphAlignment is slower than Græmlin 2.0. It is
faster than Græmlin 2.0 when processing noisy data containing spurious vertex associations. Its typical case
complexity grows approximately as O(N2.6).

On empirical bacterial protein-protein interaction networks (PIN) and gene co-expression networks,
GraphAlignment outperforms Græmlin 2.0 with respect to coverage and specificity, albeit by a small margin.
On large eukaryotic PIN, Græmlin 2.0 outperforms GraphAlignment.



Conclusions

The GraphAlignment algorithm is robust to spurious vertex associations, correctly resolves paralogs, and
shows very good performance in identification of homologous vertices defined by high vertex and/or
interaction similarity.
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Background

The advent of high-throughput techniques has generated new types of large-scale molecular interaction data,
conveniently represented by graphs or networks. Examples include metabolic networks formed by enzymes and
metabolites [1], gene co-expression networks with edges between pairs of genes indicating a certain correlation
between their expression levels [2], residue contact maps as representations of protein structures [3, 4], and
protein-protein interaction networks, where edges between vertices indicate a physical interaction between
proteins [5]. For an introduction, see reference [6].

Cross-species analysis of bio-molecular networks aims to identify sub-networks which are evolutionarily
conserved as well as network parts that have evolved rapidly. Similarly to comparison of biological
sequences [7], alignment of biological networks is an important tool for quantitative evolutionary
studies [2, 8–16]. However, such alignment poses a challenging computational problem, which goes beyond the
well-established concepts and methods of sequence alignment and of subgraph matching (isomorphism) [17]. It
involves an evolutionary process in which a pair of networks derives from a common ancestor (which accounts
for a certain degree of similarity), and each network has since evolved independently (which results in edge
changes, vertex changes, and vertices losing their alignment partner).

Here, we define the alignment of two graphs as an injective one-to-one mapping from a subset of vertices of one
graph to vertices of the other graph, see Figure 1a. An alignment of vertices also induces the alignment of edges;
the edge in one network is said to be aligned to the edge in the other network if the vertices they connect are
aligned to one another. The aim of a graph alignment is to align vertices that descend from a common ancestor.

Figure 1 a) Alignment A between two graphs is an injective one-to-one mapping (indicated by dashed
lines) between the vertices of two graphs (see text). b) Interpretation of vertices and edges depends on the type
of biological networks in comparison

Several graph alignment methods have been proposed towards this goal, based on three main ideas: The
alignment can be based on the similarity of vertices, and map vertices onto each other that, e.g., share a certain
sequence similarity (if vertices represent genes or proteins) or if aligned enzymes catalyze the same reaction (if
vertices represent enzymes in a metabolic network). This approach allows identification of ancestral
networks [14], network parts enriched in conserved edges [10, 12, 16], or selection between paralogous
genes [13].

A second and complementary approach focuses on the topology of the graphs and disregards sequence
information or other properties of the vertices. It searches for similar topological structures in two graphs, for
instance by maximizing the number of aligned edges. This approach has been used, for example, to detect
common regulatory motives in gene regulatory networks [18, 19] or to perform global network alignment [20].

A third strategy relies both on information encoded in vertices and in edges. This “hybrid” and more
comprehensive approach compares graphs based on the evolution of both vertices and edges. The key problem is



the relative weight given to the similarity of vertices and to the similarity of edges when constructing the
alignment. Several algorithms have been proposed [11, 21–27]. However, these approaches use ad hoc scoring
parameters, with a notable exception of Græmlin 2.0 (hereafter Græmlin), which uses parameters inferred from a
training set or from an initial alignment of high-fidelity vertices [22].

The scoring parameters may indeed be inferred from a training dataset formed by a library of known orthologous
genes and their interactions. This approach would be conceptually similar to the inference of the BLOSUM
matrices [28] used for biological sequence comparison. As bio-molecular networks differ in many aspects,
including experimental techniques and post-processing methods, no such parametrisation is available for their
comparison. The parameters, however, can be also inferred from the actual data being aligned, similarly to the
inference of the optimal affine gap penalties from the sequences being compared [29, 30]. The ability to infer
principled scoring parameters directly from the data is essential.

Further methods are developed that incorporate additional information resources to perform network alignment.
The global network alignment method PINALOG [31] incorporates functional annotation of proteins in addition
to their sequence and network topology. DOMAIN algorithm uses protein domains, rather than proteins, to form
the interaction network [32]. Several above mentioned methods perform also multiple-species alignment and
either use or infer phylogeny (e.g., [20, 22, 33]). Methods for querying large networks for small subgraphs, e.g,
pathways or protein complexes, have been also developed [34–36], reviewed in [37].

Here we describe a software package called GraphAlignment, which implements a hybrid pairwise alignment
method developed by Berg and Lässig [38]. It differs from the above approaches by two features: (a) An explicit
model of network evolution is used to infer alignment parameters from the data. (b) Based on this evolutionary
model, networks are aligned using a probabilistic scoring system. We compare our software and Græmlin as the
only algorithms that can automatically score both sequence and network information. To that end we perform the
simplest task, pairwise alignment.

For case studies applying our approach to mammalian gene co-expression networks and to herpesviral
protein-protein-interaction networks, see [38] and [30]. An overview of related methods for probabilistic
network analysis is given in ref. [39].

Implementation

The input of the algorithm are two networks, and mutual similarities of their vertices. The algorithm treats the
networks G and G′ symmetrically, thus comparison of G with G′ will result in the same alignment as comparison
of G′ with G. Each network G is represented by an adjacency matrix A, whose entries Aij specify the edge
between vertices i and j: The entries of the adjacency matrix may be binary, with Aij = 1 indicating the presence
of an edge between i and j, and Aij = 0 its absence. They may be continuous, e.g., to describe weighted edges in
gene co-expression networks. Adjacency matrices may be symmetric, thus describing undirected networks (e.g.,
gene co-expression networks), or asymmetric for directed networks (e.g., metabolic networks). The mutual
similarity between vertices in the two networks is specified by matrix 2, whose entries θii′ quantify, for example,
the overall sequence similarity between the gene represented by vertex i in one network and the gene represented
by vertex i′ in the other. Any other measure of the vertex similarity is possible and may be given in arbitrary units
(Figure 1b). The algorithm will infer appropriate scoring automatically based on available data.

The alignment scoring is based on an explicit model which incorporates evolutionary dynamics of both edges
and vertices. We first focus on the evolutionary dynamics of the edges. Consider a pair of vertices i, j in one
network and its orthologs i′, j′ in the second network. At speciation, the edge states a ≡ Aij and a′ ≡ A′

i′j′ in the
two networks take on the same value. Subsequently, their correlation will decay and the joint probability
Qτ (a, a′) will tend to a product of independent probabilities P(a)P′(a′) in the limit of large times τ . (See [38] for
an explicit model based on the Fokker-Planck equation.) The corresponding log-likelihood score contribution
from the pair of edges

sedge(a, a′) ≡ log
(

Qτ (a, a′)
P(a)P′(a′)

)
(1)

tends to zero in the limit τ → ∞, as then the edge states carry no information on their shared ancestry, and,



hence, the edges states a and a′ carry no information on whether i should be aligned with i′ and j with j′.

Analogous considerations for the evolutionary dynamics of the similarity of vertices leads to a scoring function
for vertex similarity [30, 38]: at speciation, vertex i in one network and its ortholog i′ in the second network do
not differ. With increasing time τ since speciation, their vertex similarity θ will decrease and the distribution
function Qo

τ (θ) will approach some background distribution P(θ). Likewise, with divergence of the two
networks, the distribution function Qu

τ (θ) of the similarities θij′ between unrelated vertices i and j′ will approach
P(θ). As τ → ∞, the corresponding log-likelihood scores

saligned(θii′) ≡ log
(

Qo
τ (θii′)

P(θii′)

)
, (2)

which reflects vertex similarity of the orthologs i and i′, and

snot-aligned(θij′) ≡ log
(

Qu
τ (θij′)

P(θij′)

)
, (3)

with j′ ̸= i′, which weighs the presence of vertex similar pairs that are not orthologous, tend to zero, and the
vertex similarities θii′ and θij′ convey no information on alignment of i and i′. The background distribution P(θ)

may be obtained as the distribution of vertex similarities between vertices that emerged or disappeared in one of
the networks after the speciation. The similarity of vertices itself may be evaluated as sequence similarity for
vertices representing genes or proteins (in gene co-expression networks and protein-protein interaction networks,
respectively) or by the measure of functional similarity for vertices representing enzymes (in metabolic
networks).

Given an alignment A, the total alignment score S(A) = Se(A) + Sv(A) is formed by contributions from all
aligned vertices and edges. The edge score Se(A) sums contribution of aligned edges:

Se(A) =
∑
(i,j)

sedge(Aij, A′
A(i)A(j)). (4)

The vertex score Sv(A) sums contributions from the aligned vertices and the contributions from the pairs of
vertices that are not aligned [30, 38]:

Sv(A) =
∑

i

saligned(θiA(i)) +
∑

i,j′ ̸=A(i)

snot-aligned(θij′). (5)

The parameters of the scoring function, i.e, sedge, saligned and snot-aligned, depend on the evolutionary dynamics of
both edges and vertices since speciation. To infer these parameters from the data, we use a simple iterative
approach [38]: Starting with an initial alignment, parameters are estimated so that the likelihood of the alignment
is maximised. The algorithm then iterates the steps of (i) aligning the graphs using the estimated parameters and
(ii) estimating the maximum likelihood parameters until convergence. Upon convergence, the algorithm returns
both the optimal scoring parameters and the corresponding best alignment of the networks. The package
GraphAlignment features built-in functions that establish the maximum-likelihood scoring parameters according
to this scheme. The ability to find the appropriate scoring parameters from the studied graphs is unique to
GraphAlignment, with a notable exception of Græmlin [22].

To find high-scoring graph alignments in step (i), we use an iterative heuristic described in [38]. This procedure
is based on mapping to the quadratic assignment problem, solved iteratively by calls to a linear assignment
solver, with added noise to help the alignment to escape from local score maxima, as in simulated annealing [40].

Results and Discussion

In Berg and Lässig [38] and Kolář et al. [30], our algorithm has been applied to gene co-expression networks and
small protein-protein interaction networks. Here, we concentrate on evaluation of the computational complexity
of the algorithm and comparison of its accuracy to the Græmlin algorithm [22]. , which is the only other



algorithm able to infer principled scoring parameters automatically. We use both simulated and empirical
bio-molecular data.

Alignment of simulated networks

While experimental data provide the ultimate test set for the algorithms, and we will use them in the following
section, we do not know the true evolutionary history of the networks and thus, we cannot assess the accuracy of
the aligners fully. To that end we use simulated data. In the numerical experiment, pairs of orthologous vertices
(orthologs) are assigned from the outset and, depending on the level of divergence, may have retained their
vertex similarity (vertex homologs), interaction similarity (topological homologs or analogs) or both.

GraphAlignment and Græmlin are able to infer the scoring parameters either from a training set of known
orthologous genes and their interactions or from some valid initial alignment of the actual network data being
aligned. Here, we concentrate on the latter option. Both algorithms are given the same initial alignment of the
networks that is formed by vertices with high vertex and topological similarity, and the parameters are inferred
from this initial alignment.

We assess the computational cost and accuracy in three different scenarios which test three different aspects of
the algorithms. In all the scenarios, we construct pairs of networks which contain 80% of orthologous vertices
and 50% of all possible edges present. In scenario (i) we compare two networks with a substantial proportion of
vertex homologs and a smaller set of analogous vertices, i.e., vertices that do not have any vertex similarity, yet
they are, by their interactions, well anchored to the subnetworks consisting of vertex-orthologous vertices. Thus
this scenario tests the ability of the algorithm to identify analogous vertices by properly evaluating the edge
(interaction) similarity. We implement the scenario (i) by networks with 60%-interaction similarity between the
orthologous pairs and with 62.5% of the orthologous pairs (50% of all vertices) having also a high vertex
similarity. The interaction terms are randomly chosen from a uniform distribution and may be interpreted as edge
weights or probabilities of the edge existence. We also assessed the scenario (i) with interaction terms selected
from a normal distribution and obtain similar results (Additional file 1). An example of the corresponding 2(i, i′)
matrix of vertex similarities and correlation matrix of interaction similarities is given in Additional file
1:Figure S3(i, ia).

In scenario (ii), we test whether the algorithm is able to decide on an ortholog between two paralogous vertices.
Specifically, we ask whether the algorithm is able to decide between two vertices in G′ with equal vertex
similarity to i in G, one of which has also interaction similarity with i (the true ortholog) and the other shares no
interactions (the spurious ortholog). We implement this scenario similarly to scenario (i) with 12.5% of the
orthologs (10% of all vertices) having a paralog with no topological similarity. An example of the corresponding
similarity structures is given in Additional file 1:Figure S3(ii).

Scenario (iii) derives from scenario (ii) but adds spurious weak vertex similarity between randomly chosen pairs
of vertices. Thus, this scenario tests the robustness of the algorithms to intrinsic noise in the biological data. An
example of the corresponding similarity structures is given in Figure 2.

Figure 2 Matrix of vertex similarities 2(i, i′) (top) and matrix of correlations between the edge weights of
vertices i in G and i′ in G′ (correlation of i’th column of A and i′’th column of A′, cor(i, i′), bottom) for the
scenario (iii) and network size N = 200. The optimal alignment of the two networks aligns the n-th vertex of G
to the n-th vertex of G′. Half of the diagonal terms represents truly orthologous vertices with both vertex and
topological similarity (highlighted in green). The other 10% of vertices i in G (highlighted in blue) have two
possible vertex similar partners in network G′, one of them with a strong topological match (the true ortholog)
and the other with no match (the spurious ortholog). Next, there are 20% of vertices with no vertex similarity but
strong topological similarity (analogs, highlighted in red). Scattered off-diagonal terms in θ model spurious
weak vertex similarities in the data



Computational complexity.

To evaluate the typical computational costs of GraphAlignment and Græmlin, we generate pairs of symmetric
random networks of the same size, N ∈[ 50, 104], and the corresponding similarity structures. Then, we test the
two algorithms on the same dataset and measure the total CPU time used to fit the scoring parameters and to find
the optimal graph alignment. Both algorithms are run on a Linux box with Intel Xeon at 3GHz with standard
parameters (GraphAlignment: Scoring parameters are estimated by built-in functions from the initial alignment
of the orthologs with high vertex similarity and the algorithm is run with standard settings. Græmlin 2.0: Scoring
parameters are estimated according to the README file using the same set of vertices as in GraphAlignment.
The algorithm is run with standard settings. For the code used, see Additional file 1:Figures S1 and S2.). The
results are summarised in Figure 3. In scenarios (i) and (ii) Græmlin’s computational costs scale roughly
quadratically (O(N1.97±0.02)) with the network size N, while GraphAlignment’s costs grow as O(N2.45±0.05)) and
O(N2.61±0.04), respectively. The algorithms finish the calculations of networks with the size N = 500 within the
same time period, with Græmlin being faster on larger networks and GraphAlignment on smaller ones. However,
addition of the spurious weak vertex similarities in scenario (iii) severely compromises Græmlin’s performance
by changing its typical-case complexity to O(N2.63±0.07), so that a calculation for networks of size N = 104 has
not been concluded in two weeks. The performance of GraphAlignment remains good, with all calculations
finished within a week of CPU time.

Figure 3 Computational complexity of the GraphAlignment and Græmlin algorithms. The scaling
parameters estimated from the best power law fit of the data are given in the panels for the scenarios (i-iii). While
the computational cost of GraphAlignment remains constant in all the scenarios, Græmlin’s performance
deteriorates with addition of spurious weak vertex similarities in scenario (iii)

The typical-case computational cost of GraphAlignment is smaller than its theoretical worst-case complexity,
which is dominated by the computational costs of the linear assignment solver [41] and by conversion of the edge
score to an instance of the linear assignment problem. The overall worst-case complexity of the algorithm is
O(N3).

Accuracy.

Both algorithms studied here rely on the initial alignment of high-fidelity vertices, which in our numerical
experiment are represented by the orthologs with high vertex and topological similarity, and on inference of the
scoring parameters from this initial alignment. Thus, it is not surprising that both algorithms correctly identified
these orthologs in virtually all cases (corresponding to green diagonals in Figure 2). The algorithms differ,
however, in their ability to align analogs (orthologs with no vertex similarity and high topological similarity in
scenarios (i-iii)) and to decide on the true ortholog between two paralogs in scenarios (ii) and (iii).

While GraphAlignment performs pairwise alignment of the networks and its results are straightforwardly
interpretable, Græmlin groups the vertices from both networks into equivalence classes which may contain
several vertices from each network. When interpreting Græmlin’s results, there are two options to consider the
vertices correctly aligned. We can consider the matching vertices of the two networks to be correctly aligned
when they are in the same equivalence class and there is no other vertex in the class (the strict rule), or we can
consider them correctly aligned whenever they are in the same equivalence class (the relaxed rule). It is worth
noting that in scenarios (ii) and (iii) the relaxed rule will consider the vertex correctly aligned even if the
equivalence class contains both its homologous paralogs and the alignment actually does not decide on the
correct partner. A vertex is considered misaligned when it is in an equivalence class (of size greater than 1)
where its matching vertex is not present. If the class contains vertices from a single graph only, these are not
considered misaligned.

In scenario (i), there are only three types of vertex pairs: pairs with strong vertex and topological similarity, pairs
with topological similarity only and pairs with no similarity between the networks. The first two groups, the
orthologs, can be aligned thanks to the information stored in the similarity matrix 2 and the correlations of the
adjacency matrices A and A′, see Additional file 1:Figure S3. Thus we call them alignable vertices. It is not
possible to align the other vertices as there is no information available on those vertices. Figure 4 shows the



accuracy of the algorithms in scenario (i): Græmlin, according to both strict and relaxed rules, aligns only
orthologs with both vertex and topological similarity and no other vertices. GraphAlignment aligns a large
proportion of the analogous vertices and in the case of networks of size greater than 500, all of them. None of the
algorithms misaligns any vertices.

Figure 4 Accuracy of GraphAlignment and Græmlin in scenario (i). While GraphAlignment aligns a large
proportion or all analogous vertices, Græmlin aligns only the pairs of orthologous vertices with both vertex and
topological similarity and no other vertices. The proportion of 62.5% corresponds to the fraction of those
orthologs (50% of all vertices) among all orthologous vertices (80% of all vertices)

Paralogous vertices in scenario (ii) can be considered an easier task to resolve, as among N possible alignment
partners, there are only two partners with some vertex similarity and, of them, just one also shares topological
similarity with its ortholog. GraphAlignment aligns the matching vertices in virtually all tested instances of the
problem. On the other hand, Græmlin correctly forms equivalence classes for the three vertex-similar vertices, as
revealed by perfect performance according to the relaxed rule; however, it does not decide between the
paralogous vertices as in the equivalence classes all three vertices are always present, Figure 5(ii). Also in the
second scenario GraphAlignment does not misalign any vertex, Figure 6(ii), while Græmlin misaligns 5% of the
vertices due to unresolved paralogous vertices.

Figure 5 Accuracy of GraphAlignment and Græmlin in scenarios (ii) and (iii). While GraphAlignment
correctly decides between paralogous genes, Græmlin creates equivalence classes that include both paralogs and
their respective partner in the other network. The introduction of spurious weak vertex similarities does not
influence GraphAlignment performance, yet it prevents Græmlin from forming the appropriate equivalence
classes

Figure 6 Accuracy of Græmlin decreases upon introduction of spuriously similar vertex pairs in scenario
(iii). GraphAlignment is not sensitive to the introduced noise. Græmlin, in addition to a decreased number of
correctly aligned vertices (Figure 5), falsely aligns a substantial fraction of the vertices. The constant level of 5%
misaligned vertices in (ii) corresponds to the paralogous vertices that are aligned in the correct equivalence class
but are not the true matching vertices (the upper blue diagonal in Figure 2)

Addition of the spurious terms into the vertex similarity matrix 2 in scenario (iii) does not influence the accuracy
of GraphAlignment but decreases accuracy of the Græmlin algorithm, which is not able to form the equivalence
classes correctly anymore and misaligns many vertices, see Figures 5(iii) and 6(iii).

Alignment of empirical bio-molecular networks

To compare the performance of GraphAlignment and Græmlin on diverse bio-molecular networks, we have
downloaded publicly available datasets of bacterial and eukaryotic protein-protein interaction networks (PIN)
and gene co-expression networks. We let the algorithms compare PIN of proteobacteria Escherichia coli,
Caulobacter crescentus and Campylobacter jejuni, and of yeast Saccharomyces cerevisiae, mouse and human.
Next, we employ the algorithms to compare gene co-expression networks of gamma-proteobacteria Escherichia
coli, Salmonella enterica and Shewanella oneidensis and a firmicute, Bacillus subtilis. The specificity and
coverage of the resultant alignments are tested against the orthologous groups defined in the eggNOG database
v3.0 [42].

Protein sequences of all species have been downloaded from the eggNOG database. PIN of the bacterial species
have been downloaded from the STRING database v9.0 [43]. Human and murine PIN have been obtained from
the IntAct database v3.1 ( [44], accessed on August 6, 2012). Only high-confidence experimental interactions are
kept (STRING: score ≥ 0.7, IntAct: miscore ≥ 0.35, no spoke-expanded interactions). To diversify the entering
data, the PIN and protein sequences of human have been downloaded from the Additional file of the
reference [45], and the yeast PIN and protein sequences from the Additional file of the reference [46] and the
Saccharomyces genome database (www.yeastgenome.org, accessed on August 8, 2012) [47], respectively.



To create the gene co-expression networks, we have downloaded large gene expression compendia of
Escherichia coli, Salmonella enterica and Bacillus subtilis from the Colombos database ( [48], accessed on
August 31, 2012). The database contains 2369, 925, and 397 carefully normalised expression profiles,
respectively. Further, we use gene expression compendia of Escherichia coli and Shewanella oneidensis
downloaded from the Many Microbe Microarrays Database (M3D, [49], accessed on September 6, 2012), which
contain 907 and 245 expression profiles, respectively. Gene–gene co-expression levels are estimated by absolute
Spearman rank correlation. Values lower than 0.5 are hard-thresholded to 0, except for the datasets from M3D,
which are thresholded at 0.8 and 0.85, respectively. All final correlation coefficients are statistically significant
(Storey’s q < 0.001). Only the genes detected in at least 75% of the profiles are evaluated.

The sequence similarity is estimated for each comparison by a pairwise local sequence alignment of protein
sequences using BLAST [50]. All hits with e-value lower than 10−10 are considered. The BLAST scores are
used as the measure of vertex similarity 2 provided to GraphAlignment and Græmlin. The orphan proteins/genes
that both have no BLAST hit in the other species and are not connected in the bio-molecular network are not
considered in the analysis. Table 1 summarizes the resultant networks.

Table 1 Bio-molecular networks used in the analyses
Protein-protein interaction networks

Source StringDB IntAct Ref. [46] Ref. [45]
Species ecoli ccres cjeju mmusc hsapi scere hsapi
Vertices 822 477 369 7977 8984 2384 9141
Edges 1777 601 687 1594 26818 16070 41456

Gene co-expression networks
Source Colombos M3D
Species ecoli sente bsubt ecoli sonei
Vertices 1219 1104 2212 2162 2358
Edges 5589 4731 11181 4379 3823
bsubt: Bacillus subtilis, ccres: Caulobacter crescentus, cjeju: Campylobacter jejuni, ecoli: Escherichia coli, hsapi: human, mmusc: mouse,
scere: Saccharomyces cerevisiae, sente: Salmonella enterica, sonei: Shewanella oneidensis.

Computational complexity.

We evaluate the overall CPU time used by the algorithms to fit the scoring parameters and to perform the actual
alignment. To define the training set for the parameter estimation, we find the eggNOG orthologous groups
present in both aligned species. From these groups we randomly select one half. The proteins belonging to the
selected orthologous groups and the interactions between them are then used as the training set. Both algorithms
are allotted the same set and the scoring parameters are estimated by standard routines, as in case of the simulated
networks. To align the networks, the algorithms run with standard settings, see Additinal file 1:Figures S1 and
S2. Figure 7 summarizes the computational complexity of the computations: As in the case of the simulated
networks (scenarios (i) and (ii)), Græmlin’s computational costs scale roughly quadratically (O(N1.8±0.2)), while
GraphAlignment’s costs grow rather cubically as O(N3.0±0.2)). The algorithms finish the calculations on small
bacterial networks within comparable intervals; Græmlin is significantly faster on larger eukaryotic networks.

Figure 7 Computational complexity of the GraphAlignment and Græmlin algorithms on empirical
bio-molecular networks. The scaling parameters estimated from the best power law fit of the data are given.
Below the data points, the respective comparisons are indicated. For explanation of the abbreviations, see Table 1

Accuracy.

To determine the quality of the resultant alignments, we estimate their sensitivity and coverage. As there is no
gold standard with which to compare the results, we define sensitivity as the fraction of the aligned pairs, or
Græmlin equivalence classes, which share the eggNOG orthologous group among all aligned pairs or classes.
This measure of sensitivity is intrinsically biased, as the eggNOG orthologous groups are based on sequence
comparison. Thus, the vertices which are orthologous, yet their sequences have diverged beyond recognition by
the methods used to construct the eggNOG orthologous groups, do not contribute to this measure. We define



coverage as the fraction of the eggNOG orthologous groups shared by the two species and correctly identified by
the network alignment. Specifically, for GraphAlignment, let NA be the number of aligned pairs and NC be the
number of the correctly aligned pairs in which the vertices (proteins or genes) belong to the same orthologous
group as defined by eggNOG. Let NO be the total number of orthologous groups shared by the vertices of the
networks being compared. Then, we define the sensitivity as NC/NA and coverage as NC/NO. For Græmlin, we
define NA as the number of equivalence classes in which both species are represented. As in case of the
simulated networks, we consider two rules for counting the number of correctly aligned equivalence classes NC:
an equivalence class is correctly aligned either when all vertices are in the same eggNOG orthologous group and
there is no vertex belonging to a different orthologous group in the class (the strict rule), or we consider the class
correctly aligned whenever any two vertices belong to the same orthologous group (the relaxed rule). As the
relaxed rule cannot decide between protein families, we will concentrate on the strict rule. Definition of the
sensitivity and coverage remain the same.

We summarize the results on PIN in Table 2: On the bacterial networks GraphAlignment slightly outperforms
Græmlin both in sensitivity and coverage, considering the strict rule. Both algorithms reach sensitivity of more
than 65% and coverage of more than 90%. While comparing the eukaryotic PIN, Græmlin outperforms
GraphAlignment on the IntAct-derived human and murine networks. Further, GraphAlignment significantly lags
behind Græmlin comparing the human and yeast literature-based networks. Considering the contributions of the
edge and node score, see Table 2, we see that the alignment provided by GraphAlignment is in that case
dominantly driven by the edge score. This contrasts with the situation in comparing the other PIN networks,
where the contributions are either even or dominated by the node score. The algorithm clearly overestimates the
edge conservation rate between vertices with low sequence homology, which is inferred from the edge
conservation rate between the orthologous vertices in the training set. That may have two reasons: Either the
protein interaction data are biased in a way that is not compatible with the GraphAlignment Bayesian model, or
different rates of interaction divergence occur between high-confidence orthologs (the training set) and proteins
with low sequence similarity. Different rates of protein-protein interaction conservation depending on sequence
similarity have indeed been documented recently [51]. The situation does not appear in the alignment produced
by Græmlin, which places more weight on vertex similarity, as we saw in the previous section.

Table 2 GraphAlignment and Græmlin performance on empirical bio-molecular networks. Protein-protein
interaction networks
Comparison Escherichia coli vs. Caulobacter crescentus Escherichia coli vs. Campylobacter jejuni
Algorithm Graph-Alignment Græmlin Blast BBH Graph-Alignment Græmlin Blast BBH
NA 445 467 462 354 363 357
NC 319 309 (333) 333 247 241 (253) 253
NO 331 331 331 255 255 255
NC / NA [%] 71.7 66.2 (71.3) 72.1 69.8 66.3 (69.7) 70.9
NC / NO [%] 96.4 93.4 (101) 101 96.9 94.5 (99.2) 99.2
Edge / vertex score 2505 / 2774 - - 2592 / 2253 - -
Comparison Homo sapiens vs. Mus musculus Homo sapiens vs. Saccharomyces cerevisiae
Algorithm Graph-Alignment Græmlin Blast BBH Graph-Alignment Græmlin Blast BBH
NA 7919 7907 7862 2369 1213 988
NC 5743 6327 6375 581 869 (882) 808
NO 6402 6402 6402 965 965 965
NC / NA [%] 72.5 80.0 (80.0) 81.1 24.5 71.6 (72.7) 81.8
NC / NO [%] 89.7 98.8 (98.8) 99.6 60.2 90.1 (91.4) 83.7
Edge / vertex score 2034 / 64661 - - 20025 / 3963 - -
For Græmlin, the values are calculated using the strict rule. Values obtained following the relaxed rule are given in parentheses. For
GraphAlignment, the relative contributions of the edge and node score are also given. Results obtained using BLAST bidirectional best
hit are provided for comparison.

When considering the gene co-expression networks, we observe very similar performance of GraphAlignment
and Græmlin. The former algorithm provides better coverage (by at least 5%), while the latter shows slightly
better sensitivity, with the exception of the comparison of Escherichia coli and Salmonella enterica, in which
GraphAlignment has both better coverage and sensitivity. See Table 3 and Additional file 1:Table S1 for the
summary of the results.



Table 3 GraphAlignment and Græmlin performance on empirical bio-molecular networks. Gene co-
expression networks
Comparison Escherichia coli vs. Salmonella enterica Escherichia coli vs. Bacillus subtilis
Algorithm Graph-Alignment Græmlin Blast BBH Graph-Alignment Græmlin Blast BBH
NA 624 687 662 585 459 401
NC 539 492 (562) 557 259 237 (296) 274
NO 543 543 543 284 284 284
NC / NA [%] 86.4 71.6 (81.8) 84.1 44.3 51.6 (64.5) 68.3
NC / NO [%] 99.3 90.6 (104) 103 91.2 83.5 (104) 96.5
Edge / vertex score 1453 / 4789 - - 1979 / 2550 - -
See Table 2 for details.

Conclusions

Here we describe a software package for alignment of biomolecular networks based on a hybrid method
developed in [38], GraphAlignment, and compare it to the algorithm Græmlin 2.0. We find advantages on both
sides: the standalone Græmlin is able to perform multiple network comparisons and provides additional
functionalities, e.g. , clustering. As revealed on simulated data, GraphAlignment outperforms Græmlin in the use
of interaction information for network alignment. We attribute the observed differences to the full use of
interaction information: when an edge between a pair of aligned nodes is absent in both networks,
GraphAlignment will typically reward the alignment of the nodes by a small score; Græmlin does not consider
this piece of information. Consequently, Græmlin tends to align dense conserved clusters . This behaviour is
advantageous for detection of such clusters, but may not be optimal in global alignment of sparse networks.

Comparison of empirical bacterial protein-protein interaction networks shows that GraphAlignment performs
slightly better than Græmlin considering both sensitivity and coverage. Comparing the interaction networks of
human and mouse based on the IntAct database, the situation is reversed. Moreover, we have observed
limitations of the GraphAlignment algorithm in comparison of yeast and human protein-protein interaction
networks, where the performance of the algorithm is decreased, most probably because the Bayesian scheme
cannot deal with biased data or with the heterogenous rate of edge dynamics. On bacterial gene co-expression
networks, GraphAlignment provides better coverage than Græmlin, while the sensitivity of both algorithms is
similar. Considering the computational complexity, GraphAlignment is as efficient as Græmlin on small bacterial
networks, while it lags significantly on large eukaryotic networks.

The simplicity and generality of GraphAlignment edge scoring makes this algorithm an appropriate choice for
global alignment of networks. The underlying model is independent of the interpretation of edge weights, i.e.,
whether these weights represent probabilities of interaction between adjacent vertices or measure interaction
strength. Since the algorithm is based on a well-defined evolutionary model, its parameters can be optimized by
Bayesian methods. The GraphAlignment procedure of data input, estimation of scoring parameters and
alignment of the networks is thoroughly documented in the package vignette, which also contains example
sessions. Furthermore, we have shown that GraphAlignment is more robust to noise, an intrinsic factor of
biological data, which is represented in our simulated data by spurious vertex similarities.

Availability and requirements

The GraphAlignment algorithm is provided as an R package available from Bioconductor
[www.bioconductor.org] and runs on all major platforms. Computationally intensive routines are coded in C. The
software package can be used freely and with no restrictions for non-commercial purposes. It contains a code
implementing the Jonker-Volgenant algorithm [41] to solve linear assignment problems. The code was written by
Roy Jonker, MagicLogic Optimization Inc. and is copyrighted, 2003 MagicLogic Systems Inc., Canada. The
code may be used freely for non-commercial purposes. For full details see the package vignette, the web page
[http://www.thp.uni-koeln.de/ berg/GraphAlignment] and the case studies [30, 38].
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Additional file

Additional_file_1 as PDF
The Additional file 1 contains the codes used to generate the network instances and to find the optimal alignment
by GraphAlignment and Graemlin 2.0, Figures S1 and S2. Further, it contains Figure S3 with the matrix of vertex
similarities 2(i, i′) and the matrix of correlations between the edge weights of vertices i in G and i′ in G′ for the
scenarios (i) and (ii). Figures S4 and S5 give the computational complexity and accuracy of the GraphAlignment
and Gaemlin algorithms in scenario (ia) with the edge weights drawn from the normal distribution. Finally, Table
S1 compares the GraphAlignment and Græmlin performance on empirical gene co-expression networks.
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