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Molecular traits, such as gene expression levels or protein

binding affinities, are increasingly accessible to quantitative

measurement by modern high-throughput techniques. Such

traits measure molecular functions and, from an evolutionary

point of view, are important as targets of natural selection. We

review recent developments in evolutionary theory and

experiments that are expected to become building blocks of a

quantitative genetics of molecular traits. We focus on universal

evolutionary characteristics: these are largely independent of a

trait’s genetic basis, which is often at least partially unknown.

We show that universal measurements can be used to infer

selection on a quantitative trait, which determines its

evolutionary mode of conservation or adaptation. Furthermore,

universality is closely linked to predictability of trait evolution

across lineages. We argue that universal trait statistics extends

over a range of cellular scales and opens new avenues of

quantitative evolutionary systems biology.
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Introduction
Quantitative traits are important links between geno-

types, organismic functions, and fitness. For some mol-

ecular traits, recent sequence data and high-throughput

trait measurements have produced quantitative

genotype–phenotype maps. Examples include the

sequence-dependent binding of transcription factors

and histones to DNA, and the formation of RNA second-

ary structures. For the vast majority of complex traits,

however, quantitative genotype–phenotype maps are out

of reach. Even comparatively simple molecular traits,

such as gene expression levels, depend on a mosaic of

cis-acting and trans-acting sequence loci. We do not know

their precise numbers, positions and trait amplitudes, nor

relevant evolutionary rates such as the amount of recom-
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bination between these loci [1]. This lack of knowledge

begs an obvious question: Which evolutionary properties

of a quantitative trait are universal, that is, independent of

these molecular details? In particular, can we formulate

natural selection on quantitative traits and their resulting

modes of evolution independently of their genetic basis?

This article is on universality in molecular evolution. We

introduce universality as an emerging statistical property

of complex traits, which are encoded by multiple genomic

loci. We give examples of experimentally observable

universal trait characteristics, and we argue that univers-

ality is a key concept for a new quantitative genetics of

molecular traits. Three aspects of this concept are dis-

cussed in detail. First, universal statistics governs evol-

utionary modes of conservation and adaptation for

quantitative traits, which can be used to infer natural

selection that determines these modes. Furthermore,

there is a close link between universality and predict-

ability of evolutionary processes. Finally, universality

extends to the evolution of higher-level units such as

metabolic and regulatory networks, which provides a link

between quantitive genetics and systems biology.

Universality in molecular evolution
In a broad sense, universality means that properties of a

large system can become independent of details of its

constituent parts. This term has been coined in statistical

physics, where it refers to macroscopic properties of large

systems that are independent of details at the molecular

scale [2]. For example, the amount of fluid running

through a tube per unit time depends only on the

viscosity of the fluid, the diameter of the tube, and the

pressure gradient, but not on the detailed chemical com-

position of the fluid. Thus, rather different fluids have the

same flux properties as long as their viscosity is the same.

This a strong, experimentally testable statement. It is not

always true: if the tube narrows at some point into a

nozzle, the fluid becomes turbulent and other things

besides viscosity matter. This tells another upfront

message: universality is usually not a mathematical iden-

tity, but an approximation that is accurate in some cases

but not in others.

Universality also arises in evolutionary biology. As in

physics, it is a property of systems with a large number

of components, and it has strong consequences for exper-

iment and data analysis. In the following, we will discuss a

number of examples, and we will pinpoint these com-

ponents and experimental consequences in each case.

In population genetics, Kimura’s celebrated diffusion

model for the evolution of allele frequencies is a universal
www.sciencedirect.com
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description [3]. The Kimura model predicts that the

frequency distribution of mutant alleles in a large popu-

lation depends only on the size of the population and the

selection coefficients of the alleles, but not on the details

of the reproductive process of individuals. Many more

detailed models of reproduction, including the Wright–
Fisher process [4], the Moran process [5], and branching

processes [6], have a common diffusion limit in large

populations. Importantly, the universal frequency spectra

of the Kimura model are statistical quantities; observing

such spectra requires frequency data from a large number

of segregating alleles in a population. Hence, the uni-

versal spectrum most frequently observed in genomic

data is the famous inverse-frequency form for synon-

ymous alleles, which evolve near neutrality. For alleles

under selection, universality is often confounded by the

heterogeneity of selection coefficients at different geno-

mic loci.

Universality may arise even in Darwinian evolution under

strong selection, for example, in rapidly adapting asexual

populations. Due to the lack of recombination, compe-

tition between simultaneously spreading beneficial

mutations leads to complex patterns of rise and fall in

their population frequencies. However, if an adaptive

process is carried by a large number of segregating alleles,

it can be described in a simpler way by a so-called

traveling fitness wave [7–12,13�,14�,15,16�]. The speed

of this wave, which is also referred to as fitness flux [17],

becomes a universal quantity: it depends primarily on rate

and average effect of beneficial mutations, but not on the

detailed distribution of their selection coefficients

[10,12,14�,16�]. In other words, the fitness flux decouples

from details of the underlying genomic evolution. More

generally, the distribution of fixed mutations becomes

insensitive to the details of genomic fitness effects and

can be characterized by only a few effective parameters

[10,14�,16�]. This feature has also been observed in a

microbial evolution experiment under strong selection

pressure [18]. Another striking universal feature emerges

for ‘passenger’ mutations carried to fixation by hitchhik-

ing with linked beneficial alleles: their substitution rate

becomes independent of their selection coefficients and

close to the neutral mutation rate [19,14�,15]. This effect

increases the substitution rate of deleterious mutations,

which may have significant impact on the adaptive

dynamics of pathogens [20] and on cancer progression

[21]. Universality has an important consequence for

theory: it may allow the construction of models that are

simple enough to be solvable, but share their universal

properties with more realistic models. In this way, adap-

tive evolution of asexual populations has recently been

mapped onto a solvable stochastic traveling-wave model

[13�]. As in physics, this universality has its limitations.

For example, if just a few beneficial alleles coexist at a

given point in time, the fitness wave starts to stutter and

its speed changes [19].
www.sciencedirect.com 
Averaging of allelic contributions is a generic feature in

the evolution of quantitative traits. For complex traits,

which are encoded by a sufficiently large number of

genomic loci, this results in universality. Consider, for

example, R.A. Fisher’s classic geometric model, which

describes the evolution of a trait with d components in a

single-peak quadratic landscape of (log, i.e. Malthusian)

fitness [22]. In this model, selection favors a unique

optimal trait value, but deleterious mutations, which

can fix by genetic drift, cause the trait to scatter at some

distance from the optimum. This process reaches a selec-

tion-mutation-drift equilibrium that depends on the num-

ber of trait components, the effective population size, the

mutation rate, and the strength of stabilizing selection,

but not on details of the genomic loci and their evolution.

In this case, the reason underlying universality is com-

pensatory evolution caused by stabilizing selection: indi-

vidual loci behave in a highly stochastic way, but

deleterious changes at one locus tend to be offset by

simultaneous or subsequent beneficial changes at other

loci. Perhaps the simplest measurable universal quantity

is the expected fitness cost or genetic load L ’ d=4N , where

N denotes the effective population size. This formula

characterizes evolutionary equilibrium for low mutation

rates and sufficiently strong stabilizing selection. We

derive it in Box 1; variants have been obtained previously

in refs. [23–25].

A number of recent studies have treated quantitative

traits under stabilizing selection, emphasizing the

‘coarse-graining’ from genomic alleles to trait variables

and the analogy to statistical mechanics [26–31,32�,33�].
Other selection scenarios that have been explored include

directional selection [31], adaptation to a moving fitness

optimum [33�,34] and apparent selection in the presence

of pleitropy [35]. Related statistical methods for the

analysis of complex traits are of growing interest for

genome-wide association studies [36,1,37,38].

All of these studies cover specific classes of quantitative

traits, which is reflected in their assumptions on genome

evolution. One group of models applies to microscopic
quantitative traits, which depend only on a few genomic

sites and are generically monomorphic in a population

[27–29,43]. For such traits, a population can be approxi-

mated as a point in trait space that moves by beneficial

and deleterious substitutions; trait diversity and linkage

disequilibrium between trait loci are negligible. An

example of a microscopic trait is the sequence-dependent

binding free energy of a transcription factor to its DNA

target sites [44]. Other models treat a complementary

class of macroscopic or polygenic traits, which are encoded

by many genomic loci and are always polymorphic. In the

spirit of classical quantitative genetics, these models

assume fast recombination between the trait loci, which

results in complete linkage equilibrium [45,26,30,31,33�].
Interestingly, the evolutionary statistics of a polygenic
Current Opinion in Genetics & Development 2013, 23:684–693
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Box 1 Genetic load is universal

Genetic load, which is defined as the difference between the

maximum (Malthusian) fitness and the mean fitness in a population,

L ¼ f� � fmean:

At evolutionary equilibrium in a fitness landscape, the dominant

contribution for low mutation rates is the drift load, which is generated

by deleterious substitutions at the trait’s constitutive sites. The

average drift load is easy to compute from the equilibrium distribution

of the trait mean, which takes the ‘Boltzmann’ form

QðG Þ ¼ exp½2NfðG Þ þ SðG Þ�;

where the entropy S(E) is the log density of sequence states mapping

onto a given trait value [29,39�]. Defining a trait-dependent free fitness
~fðEÞ ¼ fðEÞ þ ð1=2NÞSðEÞ, we can write the equilibrium distribution in

the form QðG Þ ¼ exp½2N ~fðG Þ�; the underlying formalism in sequence

space has been developed in refs. [17,27,40,41]. Given a quadratic form

of f(E) and of S(E) (which often is a good approximation), we obtain an

explicit expression for the load in free fitness,

2NðmaxG
~fðG Þ � h ~f iÞ ¼ 1

2
;

which reduces to h2NLi ’ 1=2 in the strong-selection regime

c0 � f 00(G *) � |S 00(G *)|/2N [39�]. Drift load, in particular, does not

depend on the number of trait loci, ‘ (in contrast to mutational load,

which increases with ‘). For a d-component trait as in Fisher’s geometric

model, this formula generalizes to the form quoted in the text,

h2NLi ’ d=2. It is a direct evolutionary analog of the equipartition

theorem in statistical thermodynamics, which states that every degree

of freedom that enters the energy function quadratically contributes an

average of kBT/2 to the total energy of a system at temperature T (the

proportionality factor kB is Boltzmann’s constant).

Generic evolutionary processes of quantitative traits have two

additional load components, which may become dominant over drift

load: the diversity load for polymorphic traits, which is proportional to

m, and the adaptive load in a fitness seascape, which arises from the

lag of the population behind the moving fitness peak and is

proportional to y/m (where y is the driving rate defined in the text) [42].

The different scaling of these load components with the mutation rate

m expresses a generic feature of adaptive processes: higher mutation

rates increase the equilibrium load, but facilitate adaptive changes.
trait under stabilizing selection can be derived from a

maximum-entropy principle, and some of this statistics

extends beyond evolutionary equilibrium to the case of a

moving fitness peak [33�]. Small deviations from linkage

equilibrium due to insufficient recombination can be

treated by a perturbative approach [32�]. However, low-

ering the recombination rate can have more drastic

effects: at some point, recombination ‘freezes’ and the

reproductive process becomes essentially asexual

[46,32�,47].

A more comprehensive quantitative genetics of molecular

traits requires tractable models that cover the many

important molecular phenotypes outside the above

classes. Such mesoscopic traits are encoded by multiple

genomic sites and are generically polymorphic, yet these

sites are located in a confined genomic region and evolve

under at least partial genetic linkage [48]. Mesoscopic
Current Opinion in Genetics & Development 2013, 23:684–693 
traits are often building blocks of large-scale organismic

traits. Examples are gene expression levels, which

depend on multiple cis-acting and trans-acting sites

[49], protein and RNA fold stabilities, which depend

on the coding sequence of a single gene [50,51] and

histone-DNA binding energies, which are determined

by segments of about 150 contiguous base pairs

[52,53]. Mesoscopic traits raise another universality ques-

tion: are there evolutionary features of a trait that depend

only weakly on the amount of recombination between its

constitutive sites? This question is addressed in a recent

study, which establishes an analytic evolutionary theory

of quantitative traits in asexual populations and identifies

key trait observables that are largely independent of the

recombination rate over a wide range of evolutionary

parameters [39�]. Yet another dimension of universality

comes into play if we look at adaptive evolution of quan-

titative traits. To describe the selective cause of long-term

adaptive processes, we must generalize static fitness land-

scapes to fitness seascapes that change over macro-evol-

utionary periods [54–56]. The simplest such seascape is a

moving fitness peak, which drives adaptive trait changes

toward a time-dependent optimal value. Are there features

of the adaptive process that depend only on broad seascape

characteristics such as the mean squared peak displace-

ment, but are independent of size and timing of individual

peak changes? This question is addressed in another recent

study, where we develop a non-equilibrium theory of

quantitative trait evolution [42].

Together, these developments show that universality

characterizes not just individual features of a trait, but

its entire evolutionary mode of conservation or adap-

tation. To develop this picture, we will now introduce

minimal landscape and seascape models that describe

selection on a quantitative trait in a universal way.

Evolutionary modes of quantitative traits
Complex molecular traits, such as the examples of the

previous section, are encoded by multiple genomic sites

and are generically polymorphic. The following discus-

sion will focus on additive complex traits, for which the

trait value of an individual is the sum of the allelic

contributions at the trait’s constitutive sites. Clearly, this

additivity assumption does not exclude fitness inter-

actions (epistasis) between these sites; as we will argue

below, such interactions are indeed a generic feature of

quantitative traits. The distribution of trait values in a

population often is approximately Gaussian. It is then

well characterized by just two numbers: its mean, G, and

its total heritable variance, D, which will be referred to as

the trait diversity. Mean and diversity evolve by selection

on the trait, by mutations and genetic drift at its consti-

tutive sites, and, in a sexually reproducing population,

by recombination between these sites. The change of

the trait distribution with evolutionary time t defines the

trait divergence D(t) = (G(t + t) � G(t))2 as the squared
www.sciencedirect.com
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displacement of the trait mean over a macro-evolutionary

period t. Because this dynamics is stochastic, evolutionary

theory always addresses an ensemble of evolving popu-

lations; individual populations differ in their realizations

of the stochastic evolutionary processes. Expectation

values in this population ensemble, such as the average

divergence hD(t)i and the average diversity hDi, should

be compared with the corresponding data averages over

parallel evolving populations.

To define evolutionary modes of quantitative traits, we

relate their statistics of divergence and diversity to the

underlying natural selection. We use a minimal model

chosen for its conceptual and computational simplicity:

fitness depends quadratically on the trait coordinate E,

and the trait value of maximum fitness, E*, is a function of

evolutionary time t,

f ðE; tÞ ¼ f � � c0ðE � E�ðtÞÞ2: (1)

Despite its simplicity, this fitness function covers a broad

spectrum of evolutionary scenarios. For constant trait

optimum E�, it is a time-honored model of stabilizing
selection, which is already included in Fisher’s geometric

model [22,45]. Nearly all known examples of empirical

fitness landscapes for molecular quantitative traits are of

single-peak [57] or mesa-shaped [58,28,43,59,60] forms.

Mesa landscapes describe directional selection with

diminishing return: they contain a fitness flank on one

side of a characteristic ‘rim’ value E� and flatten to a

plateau of maximal fitness on the other side. Furthermore,

trait values on the fitness plateau tend to be encoded by

far fewer genotypes than low-fitness values. This differ-

ential coverage of the genotype–phenotype map turns out

to generate an effective second flank of the fitness land-

scape, which makes our subsequent theory applicable to

mesa landscapes as well.4 For time-dependent E�(t), Eqn

(1) becomes a fitness seascape model with a component of

directional selection that is generated by displacements of the

fitness peak in the trait coordinate.5 These displacements

can be diffusive, reflecting continuous incremental eco-

logical changes affecting the trait. They can also include

rare large-amplitude shifts, which are caused by major

ecological events such as migrations or speciations.

A key feature of our fitness model is that it provides

universal selection parameters. First, how strong is sta-

bilizing selection? This should clearly be characterized by

a universal number, which does not depend on individual

trait loci. In Eqn (1), however, the strength of selection

remains undefined as long as the scale used to measure
4 Mathematically, we can define a phenotype-dependent free fitness
~f ðEÞ, as discussed in Box 1. This function turns out to be again of the

form (1), with a maximum close to the fitness rim E�.
5 In this seascape model, directional selection acts only on the trait

mean G. Because c0 is a constant, the diversity D remains in evolutionary

equilibrium under stabilizing selection, and its expectation value hDi is

time-independent.

www.sciencedirect.com 
trait values is arbitrary; for example, we can use centi-

meters or inches to measure body height. A natural trait

scale E0 can be defined, for example, as the width of the

total trait repertoire under neutral evolution.6 Measuring

trait values in units of E0 and fitness per (2N) generations,

we obtain a scaled selection constant c ¼ 2NE2
0c0, which is

a dimensionless measure of stabilizing strength. This

constant equals the ratio of the neutral trait variance

E2
0 and the weakly deleterious trait variance in the fitness

landscape f(E), which, by definition, produces a fitness

drop �1/2N below the maximum f �. In other words,

stabilizing selection is substantial if c 0 1 [39�]. This

selection regime defines the evolutionary mode of trait
conservation, which is illustrated in Figure 1a. At the

genomic level, the evolutionary dynamics involves nega-

tive epistasis and compensatory allele changes at the

constitutive sites, which are an immediate consequence

of the fitness nonlinearity in Eqn (1). This dynamics

generates substantial constraint on the expected trait

divergence hD(t)i over macro-evolutionary periods, as

we will discuss in the next section.

How important are fitness peak displacements? If we are

not interested in details of individual peak shifts, we can

promote the model (1) to a stochastic fitness seascape,

which is characterized a single additional parameter y.

This parameter is defined as the mean squared peak

displacement, measured in units of E2
0 and per unit of

evolutionary time, and is called the driving rate of selec-

tion [42]. Our population ensemble now includes the

stochasticity of selection; that is, individual populations

of this ensemble differ in the realizations of the peak

displacement process. If this process is Markovian, the

mean squared peak displacement7 over a period t is

simply E2
0yt. The regime of substantial and time-de-

pendent selection (c 0 1, y > 0) defines the evolutionary

mode of trait adaptation, which is illustrated in Figure 1b.

Here we limit the discussion to macro-evolutionary fitness

seascapes, which have low enough driving rates to allow

for efficient adaption of the trait mean. The mathematical

condition for this selection regime is quite intuitive: the

mean square peak displacement per coalescence time of

(2N) generations has to be smaller than the average trait

diversity, y 9 ỹ � hDi=ð2NE2
0Þ. As detailed in the next

section, adaptation in a macro-evolutionary fitness seas-

cape leads to an expected trait divergence hD(t)i with

constraint on shorter scales and adaptive increase on

longer scales of evolutionary time [42]. This behavior

is universal in two ways: it depends neither on genetic
6 More precisely, this scale is given by the trait asymptotic divergence,

E2
0 ¼ ð1=2Þ limt ! 1D0ðtÞ, in the regime of low mutation rate, mN 	 1

(the subscript 0 refers to neutral evolution, c0 = 0). For additive traits,

there is an equivalent micro-evolutionary definition in terms of the

average trait diversity under neutral evolution, E2
0 ¼ hDi0=ð4uÞ, where

u = mN denotes the neutral nucleotide diversity.
7 This linear form applies in a short-time regime; in addition, it is

convenient to introduce a saturation term in the long-time limit.

Current Opinion in Genetics & Development 2013, 23:684–693
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Figure 1
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Conservation and adaptation of quantitative traits (schematic). (a) Evolution under stabilizing selection. Upper panel: The distribution of trait values E in

a population (gray filled curves) evolves in a fitness landscape f(E) (thin red curves) with a time-independent optimum trait value E*. The trait divergence

D(t) = (G(t + t) � G(t))2 over a macro-evolutionary period t results from reproductive fluctuations (genetic drift) of the trait mean G around the optimum

E*. Lower three planes: The theory of this process describes an ensemble of populations; the evolution of the trait mean (black curves) around the fixed

optimum (red lines) is shown for three individual populations from this ensemble. These populations differ in their realizations of genetic drift.

(b) Adaptive evolution. Upper panel: The trait distribution evolves in a fitness seascape f(E, t) with a time-dependent optimum value E*(t). The trait

divergence D(t) results from adaptive changes of the trait mean G, which follow displacements of the fitness peak E*(t), as well as from genetic drift of

G. Lower three planes: In a stochastic fitness seascape, individual populations from the ensemble differ in their realizations of peak displacements (red

curves) and of genetic drift.
details of the trait nor on dynamical details of the fitness

seascape. Whether adaptation plays a substantial role

turns out to depend on the fitness parameters c and y
and on the evolutionary period t; this point will be

discussed further below.

In summary, the fitness seascape model (1) provides a

unifying framework for the analysis of selection on quan-

titative traits. Importantly, it shows that stabilizing and

directional selection are not mutually exclusive, but joint

features of dynamic selection. The model has two uni-

versal parameters, the stabilizing strength c and the driv-

ing rate y, which define evolutionary modes of

quantitative traits. Due to the simplicity of the model,

its selection parameters and the resulting evolutionary

modes are expected to be meaningful measures for a large

number of quantitative traits. We now show how these

modes can be inferred using universal relationships be-

tween fitness seascapes and trait data.

Inference of conservation and adaptation
Most selection inference methods use genomic infor-

mation. The well-known McDonald–Kreitman test, for
Current Opinion in Genetics & Development 2013, 23:684–693 
example, is based on differences in diversity and diver-

gence statistics between non-synonymous mutations and

the synonymous ones which are assumed to evolve near

neutrality [61]. The situation is different for quantitative

traits: in general, their constitutive genomic sites are at

least in part unknown, and we do not have a correspond-

ing ‘null trait’ that evolves near neutrality. As a con-

sequence, the neutral trait scale E0 used in our

definition of evolutionary modes is unknown as well.

But the absence of a neutral gauge is more fundamental:

for many quantitative traits, neutral evolution is not only

practically, but also conceptually inadequate as a null

model. For example, a neutrally evolving gene expression

level is zero, because genes are rapidly converted to

pseudogenes in the absence of selection. Difficulties of

this kind are in part responsible for controversial results

on selection and adaptation of gene expression levels [62–
65].

To infer selection on quantitative traits without reference

to a neutral gauge, we use the fitness seascapes of Eqn (1)

as a family of minimal selection models. These

models depend on two parameters c and y, which can
www.sciencedirect.com
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Box 2 Universal statistics of trait divergence and diversity

The scaled divergence-diversity ratio V(t) of a quantitative trait, as

defined in Eqn (2), is a universal function of evolutionary time. Its form

reflects the mode of trait evolution. In a single-peak fitness seascape

with stabilizing strength c and driving rate y, we can distinguish the

following modes [39�,42]:

� Neutral evolution (c = 0): The function V(t | c = 0, y = 0) has initial

slope 1 and increases up to an asymptotic value V0 = 1 with a

saturation time 1/m.

� Conservation in a fitness landscape (c 0 1, y = 0): Under

substantial stabilizing selection, the function V(t | c, y = 0) has the

same initial slope 1 and increases up to an asymptotic value

Vstab < 1 with a proportionally shorter saturation time Vstab/m.

There are two relevant selection regimes: Vstab � 1/(2c) for

intermediate stabilizing strength (1 9 c 9 1/u), and Vstab �
ffiffiffiffiffiffiffi
u=c

p
for asexual evolution under extremely strong selection (c 0 1/u);

universality with respect to recombination rate is broken in the

strong selection regime.

� Adaptation in a macro-evolutionary fitness seascape (c 0 1,

0 < y 9 ỹ): The divergence-diversity ratio takes the form V(t | c,

y) = V(t | c, y = 0) + Vad(t | y), with

VadðtjyÞ ¼ ðy=ỹÞðmtÞ ½1 þ OðytÞ�. This form displays two macro-

evolutionary regimes: the drift-dominated regime for t 9 Vstab/m

and the adaptive regime for t 0 Vstab/m. In the latter regime, the

ratio of the two V components is related to the cumulative fitness

flux [42],

VadðtÞ
Vstab

� yct ¼ h2NFðtÞi:
be calibrated with trait divergence and diversity data.

Specifically, our inference method is based on the ratio

between divergence and diversity,

VðtÞ � 2u
hDðtÞi
hDi : (2)

This ratio is normalized by multiplication with twice the

nucleotide diversity u = mN. It turns out to be a universal

function of divergence time, which does not depend on

the trait scale E0 [42]. As shown in Figure 2, this function

depends on selection in two characteristic ways: first,

stabilizing selection always affects trait divergence more

strongly than diversity; second, the trait divergence in a

macro-evolutionary seascape has a short-time regime

dominated by genetic drift and a long-time regime domi-

nated by adaptation. The quantitative behavior of V(t),

which is detailed in Box 2, can serve to infer the selection

parameters c and y, and the resulting mode of trait

evolution. The inference uses divergence and diversity

data that are averages over parallel measurements in

lineages of diverging species or colonies. This is a typical

kind of measurement, for example, in microbial evolution

experiments [66,67�]. The underlying analytical theory,

which has been presented here for evolution over a single

period t, can be generalized to an entire phylogeny. It can

also be generalized to further seascape classes and evol-

utionary modes, for example adaptive evolution of the

trait diversity in response to time-dependent stabilizing

strength c(t).

How much adaptive trait evolution has happened over a

macro-evolutionary divergence period? The most natural
Figure 2
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Evolutionary modes and inference of selection for quantitative traits. The

figure shows the universal divergence-diversity ratio V, as defined in

Eqn (2), for a quantitative trait evolving in a single-peak fitness landscape

or seascape. This ratio is plotted as a function of evolutionary time t.

Neutral evolution: The function V(t) reaches the saturation value V0 = 1

for large times (gray curve). Conservation: This function has a smaller

saturation value Vstab, which is reached faster than for neutral evolution

(red curve). Adaptation: There is a linear surplus Vad(t), which measures

the amount of adaptation (blue curve). This behavior can be used to infer

selection, as detailed in Box 2.

www.sciencedirect.com 
measure of adaptation is the fitness flux f(t), which is

defined as the rate of movement on a fitness landscape

or seascape by genotype or phenotype changes in a

population [54,17]. The cumulative fitness flux,

FðtÞ ¼
R tþt

t fðtÞ dt, measures the total amount of adap-

tation over a macro-evolutionary period in a population

history. This quantity satisfies the fitness flux theorem,

which generalizes Fisher’s fundamental theorem of

natural selection to generic mutation-selection-drift pro-

cesses [17]. As shown by the fitness flux theorem, the

average cumulative fitness flux over parallel evolutionary

histories, in units of 1/2N, measures the importance of

adaptation compared to genetic drift: adaptation is sub-

stantial if h2NF(t)i01. For the evolution of a quantitative

trait in a fitness seascape of the form (1), we can write the

fitness flux to a good approximation as the evolutionary

rate of the trait mean multiplied by the local seascape

gradient,

fðtÞ ¼ dG ðtÞ
dt

 @ f ðG ; tÞ

@G
: (3)

In the weak-mutation regime, the average cumulative

fitness flux takes the simple form h2NF(t)i � yct [42].

This quantity depends only on the stabilizing strength, c,
and the scaled mean squared displacement of the fitness

peak, yt, but not on details of the peak dynamics. It is

universal and, in accordance with the fitness flux theorem,

always non-negative [17]. As shown in Box 2, the scaled

flux h2NF(t)i is related to the divergence data of Figure 2:

it approximately equals the ratio Vad(t)/Vstab.
Current Opinion in Genetics & Development 2013, 23:684–693
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Predictability of genotypic and phenotypic
evolution
Chance and necessity are venerable topics in evolutionary

biology. Modern evolution experiments with microbial

and viral systems can address these topics from a new

angle, because the same experiment can be run for many

populations in parallel [68]. We can then ask how repea-

table the experimental outcome is. In other words, can

the evolution of a population be predicted from the

knowledge of a previous experiment? This question

can be addressed at the level of genotypes, of phenotypes,

and of fitness. At each level, we can assess the predict-

ability of the final adaptive outcome or of the complete

mutational trajectory over the course of evolution.

Given the combinatorial complexity of genotype space,

genotypic predictability is low unless we restrict our focus

to small subspaces, such as the adaptive genotypes of a

single protein that acquires antibiotic resistance [69]. But

even in such restricted spaces, the statistics of adaptive

processes and their mutational trajectories is complex

[70]. Because genotype-dependent fitness landscapes

are often rough, the rate and paths of adaptation depend

on two opposing forces: higher supply of single beneficial

mutations canalizes the dynamics along accessible paths

and increases predictability, while higher supply of

double mutations bridges intermediate fitness valleys

and decreases predictability. As shown by a recent com-

putational study, these dynamics can generate a non-

monotonic dependence on experimental control

parameters such as population size: the predictability

of final genotypes is generically low, but there are sweet

spots of high predictability at specific values of these

parameters [71�].

At the genome-wide level, a similarly complex pattern of

predictability emerges for beneficial mutations at indi-

vidual genomic sites. A recent experimental study of

adaptive evolution in 40 yeast populations identified

two opposing forces influencing the substitution rates

of beneficial mutations: their origination rate increases,

but the probability of surviving clonal interference

decreases with increasing population size [67�]. This is

in accordance with clonal interference theory: the sub-

stitution rate of mutations with a given selection coeffi-

cient is predicted to depend on population size in a non-

monotonic way, which again leads to a sweet spot of

predictability for some value of N [19]. This non-mono-

tonic behavior signals drastic deviations of the evolution-

ary dynamics from the classical picture of rare,

independent beneficial mutations (which have substi-

tution rates proportional to N and to their selection

coefficient).

Parallel and convergent evolution has been identified in

several studies at the level of genes and higher genomic

units; this is often coupled with strongly divergent
Current Opinion in Genetics & Development 2013, 23:684–693 
evolution of individual mutations in these genes

[72,73,66,74,75]. Do the mutations in a given gene affect

a common trait, say, the gene’s enzymatic or regulatory

activity? This point has been highlighted in some recent

studies. A massively parallel evolution experiment, which

involved 115 lines of Escherichia coli adapting to high

temperature, revealed strikingly convergent evolution

of molecular traits, including complex traits such as

RNA polymerase function [76�]. Another parallel exper-

iment explored resistance of E. coli to three different

types of antibiotics [77�]. Parallel populations had similar

phenotypic trajectories during their adaptive evolution in

response to all three types of antibiotics. Genotypic

parallelism was found in response to one of the drugs,

suggesting a more constrained mutational pathway in that

case. Remarkably, high phenotypic predictability is not

limited to the specific types of selection imposed in

laboratory experiments. A recent study reported similarly

high predictability of specific adaptive traits for E. coli
populations in the highly complex ecosystem of the

mouse gut [78�].

We now show that high phenotypic predictability,

coupled with low genotypic predictability, is a generic,

universal feature in the evolution of complex quanti-

tative traits. Recall the simple reason underlying uni-

versality: Stabilizing selection generates compensatory

genetic changes at the trait’s constitutive loci. That is,

stochastic changes in trait and fitness at one locus tend

to be buffered by simultaneous and subsequent

changes at other loci. This effect increases with the

complexity of the quantitative trait, that is, with the

number of sequence loci it depends upon. Stabilizing

selection can generate substantial evolutionary con-

straint of trait mean and diversity, even if selection

on individual loci is weak. Thus, the phenotypic con-

straint does not depend on details of any single locus,

but is an emerging property of all of the trait’s con-

stitutive loci. To estimate the predictability of a trait

evolving in a fitness seascape of the form (1), consider

the schematic evolution experiment sketched in

Figure 1. We look at an ensemble of populations that

start from a common trait distribution and evolve in a

given fitness landscape or in individual realizations of a

fitness seascape. We can ask to what extent the trait

repertoire or the underlying genotype repertoire of one

evolved population is predictive of the trait or genotype

values in another evolved population, depending on the

evolution period t. For complex traits, it is clear that

the predictability of a trait’s constitutive genotype is

generically poor, because many different genotypes

lead to a trait value close to a given fitness optimum.

This degeneracy is a major limiting factor for gene

association studies. At the phenotypic level, we can

estimate predictability by comparing the expected trait

diversity in a single population with the mean squared

trait distance between two evolved populations [39�],
www.sciencedirect.com
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PðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hDi

2hDðtÞi

s
¼

ffiffiffiffiffiffiffiffiffiffi
u

VðtÞ

s
: (4)

This measure is again universal, because it is directly

related to the universal function V(t). For trait evolution

near neutrality, the predictability decays to a small equi-

librium value P0 �
ffiffiffi
u
p

. But for sufficiently weak

mutation rates and even moderate stabilizing strength,

the equilibrium value Pstab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=VstabðcÞ

p
can be of order

one: Stabilizing selection generates trait predictability

over macro-evolutionary periods. Even if directional

selection displaces the trait optimum E� to a new value

that is common to the ensemble of populations, the trait

distribution in each of the single evolved populations

remains predictive of the ensemble trait repertoire at the

same point in time. In a stochastic fitness seascape, lin-

eage-specific changes of trait optimum will reduce

the predictability in the adaptive regime,

PðtÞ ¼ Pstab½1 � FðtÞ þ Oðt2Þ�, but it can still retain

values of order one over macro-evolutionary periods

[42]. We conclude that the recent experimental obser-

vations of mutational stochasticity coupled with predict-

ability at the level of molecular functions can be

explained in a natural way, if we assume that many of

these functions involve a complex quantitative trait.

Toward evolutionary systems biology
We have discussed stabilizing selection as a mechanism

that generates universal features of constraint and adap-

tation for a complex molecular trait. The same mechan-

ism operates at different levels of molecular evolution. In

a metabolic or regulatory pathway, for example, stabiliz-

ing selection on the function of a pathway generates

evolutionary constraint on its output. This constraint is

universal in the sense that it does not depend on fine-

tuned levels and activities of the pathway components.

Again, the reason for universality is that changes in one

pathway component tend to be buffered by compensatory

changes in other components. These compensations can

be statistical or systematic, that is, generated by feedback

loops in the pathway organization. Universality and pre-

dictability of pathway output emerge primarily in com-

plex, higher-level pathways, which have multiple

compensatory channels. This suggests the hierarchy of

molecular functions is reflected by an evolutionary hier-

archy: universality and predictability increase, while sto-

chasticity decreases with increasing level of complexity.

This scale-dependence has been observed in the exper-

iment of ref. [76�]: the level of predictability system-

atically increases with the level of genomic organization,

ranging from individual mutations to genes, operons, and

larger functional units. The increase of universality and

predictability with scale may be limited by pleiotropy:

lower-level system components are shared between

different higher-level components [79], which implies

they are under additional evolutionary constraint.
www.sciencedirect.com 
Metabolic and regulatory networks, feedback loops, buf-

fering, and stability are well-known topics of systems

biology. Given the dramatic increase of evolutionary data

at different molecular levels, they may also become

elements of a quantitative evolutionary picture of mol-

ecular and cellular functions. As we have argued, this

picture will involve hierarchies of nested quantitative

traits with multiple fitness interactions, leading to

scale-dependent universality and predictability. Making

it quantitative will link systems biology to a new gener-

ation of molecular quantitative genetics, which remains

largely to be developed.
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27. Berg J, Willmann S, Lässig M: Adaptive evolution of
transcription factor binding sites. BMC Evol Biol 2004, 4:42.
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54. Mustonen V, Lässig M: Adaptations to fluctuating selection in
Drosophila. Proc Natl Acad Sci U S A 2007, 104:2277-2282.

55. Mustonen V, Lässig M: Molecular evolution under fitness
fluctuations. Phys Rev Lett 2008, 100:108101.
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