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ABSTRACT Trait differences between species may be attributable to natural selection. However, quantifying the strength of evidence
for selection acting on a particular trait is a difficult task. Here we develop a population genetics test for selection acting on
a quantitative trait that is based on multiple-line crosses. We show that using multiple lines increases both the power and the scope of
selection inferences. First, a test based on three or more lines detects selection with strongly increased statistical significance, and we
show explicitly how the sensitivity of the test depends on the number of lines. Second, a multiple-line test can distinguish between
different lineage-specific selection scenarios. Our analytical results are complemented by extensive numerical simulations. We then
apply the multiple-line test to QTL data on floral character traits in plant species of the Mimulus genus and on photoperiodic traits in
different maize strains, where we find a signature of lineage-specific selection not seen in two-line tests.
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EXTENSIVE experimental work has helped to reveal the
genetic architecture of quantitative traits (Dilda and

Mackay 2002; Brem and Kruglyak 2005; Mackay and Lyman
2005; Mezey et al. 2005; Nuzhdin et al. 2005; Flint and Mackay
2009), allowing researchers to study the basis of trait variation
within and across species. A long-term goal of QTL research is
to understand the mapping from genotype to phenotype un-
derlying a particular quantitative trait. Crosses between indi-
viduals from different lines are used to identify loci whose
states are statistically correlated with a particular trait. How-
ever, the ability of QTL studies to identify the molecular basis
of quantitative traits is still limited; it is especially difficult to
pinpoint genetic loci that influence a trait (Mackay et al. 2009).
Targeted efforts have been made to resolve loci at the level
of single genes or even nucleotides (Pasyukova et al. 2000;
Fanara et al. 2002; De Luca et al. 2003; Harbison et al.
2004; Moehring and Mackay 2004; Jordan et al. 2006),
but these cases are still the exception.

In recent years, QTL experiments also have been extended
to crosses between multiple lines. Harnessing information
from several lines dramatically increases the power and

accuracy of QTL identification (Rebai and Goffinet 1993;
Steinhoff et al. 2011), allowing researchers to test for epi-
static interactions (Jannink and Jansen 2001; Blanc et al.
2006) and increasing the genetic variability that can be
accessed (Blanc et al. 2006). For instance, all loci that have
the same allele in two lines also have the same allele in all
crosses of these lines. In the absence of genetic variance, the
effect of such a locus on a trait cannot be determined. An-
alyzing more than two lines increases the number of loci
that differ by state in at least one line, allowing researchers
to identify more loci affecting a quantitative trait. Multiple-
line pairwise crosses are most common in animal and plant
breeding (Blanc et al. 2006; Rückert and Bennewitz 2010),
where often many different lines are available for crossing.
However, the extension to multiple-line crosses also brings
new challenges. For instance, choosing the right mating de-
sign for the QTL experiments is important for multiple-line
crosses (Crepieux et al. 2004; Verhoeven et al. 2006). Because
most statistical methods for QTL identification developed for
two-line crosses cannot be easily extended to the multiple-
line case, new and more sophisticated methods have been
developed (Xie et al. 1998). These methods are based on
least-squares regression (Rebai and Goffinet 2000), maxi-
mum likelihood (Xie et al. 1998; Xu 1998), and a Bayesian
approach (Yi and Xu 2002) and have been applied to a range
of experimental data sets (Blanc et al. 2006; Chen 2009;
Coles et al. 2010; Rückert and Bennewitz 2010; Steinhoff
et al. 2011).
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In the field of evolutionary genetics, information from
QTL analysis has been employed to infer the evolutionary
forces acting on a particular trait. Here the central question
is whether natural selection acted on a trait during its
evolutionary history. A more specific question is whether the
strength of selection is constant across a phylogeny or the
selection has acted in a lineage-specific manner. Several
statistical tests make use of the data gained from QTL
experiments to detect the effects of natural selection. Orr’s
test (Orr 1998) asks whether the statistical distribution of
alleles shows an excess of alleles that increase the value of
the trait (+ alleles) in one line as a sign of selection. Orr’s
test, in turn, was assessed by Anderson and Slatkin (2003),
who found that the test statistics are conservative, and Rice
and Townsend (2012b), who observed an unusual depen-
dence of the test on the variance of the distribution of ad-
ditive effects. Based on Orr’s approach, Fraser, Moses, and
Schadt (Fraser et al. 2010; Fraser 2011) used QTL statistics
to detect a signal of nonneutral evolution in gene expression
levels in different yeast strains. Rice and Townsend (2012a)
used a test that combines QTL analysis with data from mu-
tation accumulation experiments and asks whether muta-
tions seen between two lines tend to affect the trait more
than those seen in experiments that accumulate largely neu-
tral mutations. However, currently, no test uses the full sta-
tistical information from multiple-line QTL experiments.

In this paper we develop a statistical framework to test
different evolutionary hypotheses for multiple QTL lines.
Using a systematic likelihood-based approach, we find that
a multiple-line test has a higher statistical power to identify
selection compared to the two-line test. However, the
consequences of multiple-line testing go beyond the mere
increase in the number of observed loci. In two lines, the
effect of lineage-specific selection turns out to be statistically
indistinguishable from the bias introduced by testing traits
with the largest phenotypic differences from a pool of traits
for selection. In three or more lines, evolutionary scenarios
involving lineage-specific selection generally can be distin-
guished from such bias. We use this effect to search for
lineage-specific selection in QTL data on different traits in
species of the genus Mimulus and in different maize lines.

Our test follows Orr’s test (Orr 1998) in that we use
a two-state model at each locus and infer selection from
the statistics of + and2 alleles. Also, we condition the allele
statistics on the phenotypic difference to deal with a poten-
tial bias introduced by testing multiple traits. Unlike Orr, we
use population genetics models to compare the empirical
allele statistics with the statistics observed under different
evolutionary scenarios. The approach of Rice and Townsend
(2012a) is similar in spirit but uses information from mutation-
accumulation experiments, which goes beyond standard
QTL analysis. Numerical simulations performed to assess
the statistical power of the test are similar to those of Rice
and Townsend (2012b) (which, however, focus on the con-
nection to the variance of the distribution of additive
effects), and for the multiple-testing simulations, we use

a scenario analogous to that of Anderson and Slatkin
(2003).

In what follows, we develop a log-likelihood score that
quantifies the likelihood of neutral and selective hypotheses
in an explicit evolutionary framework. We first explore our
approach on artificial data and probe the efficiency of our
test in the presence of different confounding factors. We
then discuss the bias that trait selection can introduce into
the allele statistics and how in three lines or more the effects
of natural selection can be distinguished from bias resulting
from trait selection. Finally, we apply our test to floral
quantitative traits in different Mimulus species and to pho-
toperiod traits in maize, finding evidence for lineage-specific
selection that is not detectable in two lines.

An n-Line Selection Model

In this section we construct a simple population genetics
model of QTL evolving in n haploid populations in the weak-
mutation regime with full recombination. Trait and fitness
are a linear function of the states of the loci. The effects of
interlocus epistasis, simultaneous polymorphism, and lack of
recombination will be examined in section entitled, Epistasis
and Multiple Segregating Loci.

Central to our analysis is a quantitative trait T affected by
L loci labeled l ¼ 1; . . . ; L. Each locus is characterized by
a genotype, and the genotype at each locus affects the trait
in a particular way. For example, consider a trait affected by
a transcription factor. In this case, the regulatory region of
a gene may be a sequence locus affecting the trait. We can
approximate the relationship between trait and locus by
a two-state variable q with states “on” (functional binding
site in the regulatory region) or “off” (nonfunctional site).
We describe each locus l by such an effect state (state for
short) ql. The effect state depends on the genotype and
describes the effect a particular genotype at a locus has on
the trait. In general, different genotypes at a locus corre-
spond to the same state (there are many different sequences
with a functioning binding site and even more without). We
denote the number of genotypes of a locus corresponding to
state q by vq.

Because of the limitations of QTL mapping, the informa-
tion on the effect state of a locus is indirect; in most cases it
is not known what feature of the genotype determines the
state of the locus. Instead, for each allele at a locus, QTL
analysis gives the effect a particular allele has on the trait
averaged over many crosses. In QTL studies using crosses
between four different lines (Blanc et al. 2006; Coles et al.
2010), most loci show a clear separation between alleles;
the different alleles either decrease or increase the trait by
a certain amount. For this reason, we restrict ourselves to
a two-state model of loci, ql ¼ 61, effectively focusing on
the feature of a locus’s genotype with the largest effect on
the trait. An extension to more states is easily possible and
may be required when analyzing a large number of lines. In
a study using crosses between 25 lines, loci harboring alleles
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with several different effects on the trait have been observed
(Buckler et al. 2009).

We assume a linear trait model (character model)
without trait epistasis (interlocus epistasis); the state at
each locus contributes additively to the trait, that is,

T
�fqlg� ¼ XL

l¼1

alql (1)

where the additive QTL effect al specifies the contribution of
locus l to the trait. Without loss of generality, we take al $ 0,
so ql ¼ þ1 (termed the + state) results in a higher trait
value than ql ¼ 2 1 (the 2 state). The additive effect al of
a locus is taken from experiments on multiple crosses be-
tween different lines, as is the state ql of a particular allele.
fqlg denotes the set of effect states at all L loci. We assume
a linear Malthusian fitness (log-fitness) landscape

F
�fqlg� ¼ sT

�fqlg� ¼ s
XL
l¼1

alql (2)

with selection strength s. 0, resulting in a selection coeffi-
cient sl ¼ Nsal for each locus proportional to the additive
effect al. Under this assumption, the effect of the state of
a locus on both trait and fitness is independent of the states
of other loci. This assumption will be examined and relaxed
later. There is no environmental component and (for a dip-
loid population) no dominance.

We consider a simple population genetics model de-
scribing a haploid population of effective population size N
in the weak-mutation regime with full recombination. In this
regime, mutations appear at some rate and are eventually
either fixed or excised from the population. The arrival and
fixation of mutations are a stochastic process whose rate
mNð12 e22DFÞ=ð12 e22NDFÞ depends on the fitness differ-
ence DF of the new allele relative to the preexisting allele,
the effective population size N, and the mutation rate m

(Wright 1931; Kimura 1962).
At low mutation rates, most loci are monomorphic at

a given point in time but may differ between lines (owing to
mutations that fix in a given population before the next
mutation occurs). The statistic of states PðqÞ of a locus
describes the probability that this locus in a given line is in
state q. In the limit of long evolutionary times between lines,
this statistic no longer changes with time, so the probability
PðqÞ is stationary (equilibrium). Under neutral evolution,
the equilibrium probability PðqÞ depends only on the num-
ber vq of sequence variants of the locus corresponding to
state q, that is,

PðqÞ ¼ vq

vþ þ v2
¼ expfVqg

expfVgþ expf2Vg (3)

The shorthand V ¼ ð1=2Þlogðvþ=v2Þ is called the multiplic-
ity parameter of a particular locus. In our example with the
transcription factor binding site, the number of sequences

with a functioning binding site v+ is much lower than the
number of sequences without such a site v2, leading to
Pðq ¼ þ1Þ � 1 in the absence of selection. The multiplicity
parameter of a locus quantifies the asymmetry between +
and 2 states in the absence of selection and, correspond-
ingly, the relative number of mutations at a locus increas-
ing or decreasing the trait. Under selection, however, the
equilibrium-state statistic PðqÞ also depends on the fitness
difference between the two states and is given by Iwasa
(1988), Berg et al. (2004), and Sella and Hirsh (2005) as

P
�
qjNsaþV

� ¼ eNsaqþVq

eNsaþV þ e2Nsa2V
(4)

This result is valid in the low-mutation regime but can be gen-
eralized (Iwasa 1988; Barton and Coe 2009; Nourmohammad
et al. 2013b). A brief derivation is given in Appendix B. The key
assumption behind this result is that after long times since the
last common ancestor, a stationary distribution PðqÞ is reached.
This assumption will be examined in the section entitled, Testing
for Selection at Different Evolutionary Times. In Appendix A we
derive results valid in the complementary regimes of short times
since the last common ancestor.

For n lines labeled i ¼ 1; . . . ; n, the joint probability dis-
tribution in the limit of long evolutionary time factorizes
over lines, so the statistic of states for a given locus is

P
�
q1; . . . ; qnjNs1aþV;⋯

�¼ 1
Z
e
Pn

i¼1
ðNsiaþVÞqi (5)

where Z ¼ P9
q1;q2;...;qn¼61e

Pn

i¼1
ðNsiaþVÞqi . Here we need to

consider one subtlety arising from QTL analysis based on
crosses between individuals from different lines: in crosses,
only the effects of loci differing in their state q in at least two
lines can be determined. For this reason, the two configu-
rations q1 ¼ q2 ¼ ⋯ ¼ qn ¼ 61 remain unobservable. Thus
the sum in the normalizing factor Z is over all states of the n
lines q1; q2; . . . ; qn excluding the cases q1 ¼ q2 ¼ ⋯ ¼ qn
(indicated by

P
9).

Under the linear fitness model (2), states at different loci
are statistically independent, so the statistics of states over
several loci are the product of (5) over loci

P
�n

qi;l
o����fNsig; falg; fVlg

�

¼
YLdiv
l¼1

P
�
q1;l; . . . ; qn;l

��Ns1al þVl;⋯
�
  (6)

where the number of loci with different states in at least two
lines is denoted by Ldiv. The statistics of states at different
loci may differ from this simple form for several reasons. The
first is genetic linkage: here we assume free recombination
between loci, as is standard in quantitative genetics (see
later for an example with full linkage). A second reason is
epistasis, which will be discussed in the section entitled,
Epistasis and Multiple Segregating Loci.
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Inference and Hypothesis Testing for Different
Evolutionary Scenarios

The statistics of states (6) can be used to infer the parameters
of this model (selection strengths Nsi for different lines and
the multiplicity parameters Vl at different loci) from experi-
mental data on the states fqi;lg across lines and loci and on
the additive effects falg. Denoting the position of the maxi-
mum f ðx*Þ of a function f ðxÞ over x by x* ¼ argmax

x
f ðxÞ, the

maximum-likelihood estimates of the free parameters fNsi;Vlg
are obtained by maximizing (6) with respect to the free
parametersn

Ns*i ;V
*
l

o
¼ arg max

fNsi;Vlg
P
�n

qi;l
o���fNsig; falg; fVlg

�
  (7)

There are two limitations to the inference of multiplicity
parameters and selection strengths. The first is that the
number of lines n limits in particular the inference of
multiplicity parameters. For n ¼ 2 lines, the only observable
loci are in states ðq1; q2Þ ¼ ðþ2 Þ or ð2þÞ, so
Pðq1; q2jNs1aþV;⋯Þ ¼ eðs12s2Þaðq12q2Þ=Z. Hence the statis-
tics of states do not depend on the multiplicity parameters,
making their inference impossible. For n. 2, the statistics of
states depend on the multiplicity parameters, and the esti-
mate of these parameters improves with increasing number
of lines because the size of the data (i.e., number of loci
times the number of lines) increases relative to the number
of multiplicity parameters (one per locus). Second, selec-
tion strengths can only be determined relative to each
other: The likelihood (6) depends on the states ql;a viaP

a;lðNalsa þVlÞqa;l. Increasing all selection strengths uni-
formly by some s and decreasing each multiplicity parameter
Vl by Nals thus leaves the likelihood unchanged. As a result,
for example, a situation where selection strength s is uni-
form over the lines and the multiplicity parameters are all
zero is statistically indistinguishable from a multiplicity pa-
rameter Vl ¼ Nals and neutral evolution. In what follows we
will focus on lineage-specific selection and determine selection
strengths relative to each other. Using further information on
multiplicity parameters [e.g., from mutation-accumulation
experiments (Rice and Townsend 2012a)] or further assump-
tions (e.g., that multiplicity parameters are uncorrelated with
effect sizes or are, on average, nonnegative), we can also
obtain information on absolute selection strengths from (6).

When only few loci for a trait are known, the inference of
all parameters may be unreliable because of overfitting. In
this case, it is convenient to restrict the parameter space and
test specific hypotheses against each other. For example, we
can compare a scenario with uniform selection strength on all
lines (s1 ¼ s2 ¼ ⋯ ¼ sn ¼ s) with a lineage-specific selection
pattern (s1 6¼ s2 ¼ ⋯ ¼ sn ¼ s). The log-likelihood score

SQ;P ¼
XLdiv
l¼1

ln
Q
�
q1;l; q2;l; . . . ; qn;l

���Ns*1al þV*
l ;⋯

�
P
�
q1;l; q2;l; . . . ; qn;l

���Ns*91 al þV*9
l ;⋯

�
2
64

3
75 (8)

quantifies the evidence for two such evolutionary scenarios
P and Q relative to each other. Both these scenarios are de-
scribed by statistics of the form (6) but differ in their param-
eter values. The score (8) is positive if the distribution of
states observed in a particular data set is more in agreement
with the statistics of states in scenario Q than in scenario P.
For both these scenarios, the remaining selection parameters
are estimated together with the multiplicity parameters
according to (7).

When two scenarios with different numbers of free
parameters are tested against each other, the log-likelihood
score is generally biased toward the scenario with more
parameters. A simple way to correct this bias is the Bayesian
information criterion (BIC) (Schwarz 1978). Under the BIC
correction, the score (8) is decreased by an offset k=2lnLdiv,
where k is the excess number of parameters in model Q.

Increased Statistical Power in More than Two Lines

There is a simple reason why the power of the selection tests
increases when more lines are used. Because only loci with
different states in at least two lines can be observed, a certain
fraction of loci affecting the trait remains hidden from the
analysis. For two lines, loci with the states ðq1; q2Þ ¼ ðþþÞ
and ð22 Þ cannot be observed. For three lines, there are
only two unobserved out of eight possible configurations,
and the fraction of unobserved loci decreases further
with the number of lines. In general, the probability of
a locus remaining unobserved in n lines is given
by gðnjsi;VÞ ¼ Qn

i¼1Pðþ1jNsiaþVÞ þQn
i¼1Pð21jNsiaþVÞ,

where the statistics of states PðqjNsiaþVÞ are given by (4).
To probe the log-likelihood score (8) for a varying

number of lines, we test selective and neutral hypotheses
against each other on artificial data. For n ¼ 2; . . . ; 6 lines
and L ¼ 20 loci, additive effects falg are drawn randomly
from a gamma distribution (Zeng 1992; Orr 1998). After
choosing the effects falg, their values are fixed and are
taken to be known explicitly (in practice, they are obtained
via experiments using QTL crosses). Then we generate arti-
ficial QTL data under different scenarios, which we label for
easy reference. In the first, neutral scenario P0, the selection
strength on all lines is zero (s1 ¼ s2 ¼ ⋯ ¼ sn ¼ 0). In the
second scenario Q1, only line 1 is under selection (s1 ¼ s,
s2 ¼ ⋯ ¼ 0).

In each run, a set of states fq1;l; . . . ; qn;lg is drawn from
the probability distribution (5) with fixed values of Nsi for
each line and Vl for each locus corresponding to scenario Q1

(see caption to Figure 1 for details). For the subset of loci
with different states in at least two lines, the log-likelihood
score SQ1;P0 (8) is computed. To gauge the statistical signif-
icance of a given value of this score, we also estimate the
probability of reaching the same score or higher under the
neutral scenario P0. This P-value measures the rate of false-
positive results (type I error rate) and is computed by per-
forming a large number of runs under the scenario P0 to see
what fraction of them gives a score matching or exceeding S.
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To gauge how frequently a positive score occurs in favor of
scenario Q1 with selection on line 1, 2, or 3, the configura-
tions drawn from the null model P0 are sorted according to
their trait values T1;T2;T3.

As expected, the log-likelihood score for the selective
model Q1 increases with the number of lines, while the
mean P-value decreases (Figure 1). This increase in statisti-
cal power as a result of the increased number of loci is
a simple quantitative effect arising from an increase in the
number of loci Ldiv with different states in at least two lines.
The dependence of the score S on the number of lines n is
approximately given by

SðnÞ ¼ S2
12gðnjsi;VÞ
12gð2jsi;VÞ (9)

where S2 is the score for two lines. Since we average over
many loci to obtain S, the multiplicity parameter V appear-
ing in gðnjsi;VÞ has to be understood as an average multi-
plicity parameter over the loci. SðnÞ is an increasing function
of n, with the largest increase in score between two and
three lines (Figure 1A). The value of SðnÞ saturates for large
n because all loci become detectable; the exact saturation
value is S2½1=12 gð2jsi;VÞ�. Nevertheless, the number of
detectable QTL, and hence the statistical signal of selec-
tion, can remain small, even when the number of lines is
large, if selection strength is so high in all n lines that all or
nearly all QTL have the same state in all lines. This can be
seen from the expression for the fraction of unobserved loci
gðnjsi;VÞ, which tends to 1 as all si go to 6N. If Nsig. 2 in
all lines (which is the important quantity here), fewer than
5% of the loci are observable (assuming that V ¼ 0). In
practice, this particular problem can be remedied by in-
cluding in the analysis one line with small selection pres-
sure on the trait.

While more lines bring more information, they also
increase the experimental effort required to perform pair-
wise crosses between them. For this reason, we also compare
two- and three-line tests while keeping the total number of
crosses constant. Given a fixed number of crosses that can
be performed, should those crosses be concentrated on two

lines, or should pairwise crosses on three lines be performed
(with fewer crosses between each pair of lines)?

To compare two- and three-line tests on QTL mapping
data at a fixed total number of crosses, we simulated a QTL
model for three lines with Ldiv ¼ 20 loci differing in state
between these lines under scenario Q1. One-hundred SNP
markers were simulated, with every fifth marker being
linked to a QTL whose additive effect is drawn from
a gamma distribution. We performed Mtot crosses between
lines 1 and 2 for the two-line mapping andMtot=3 crosses for
lines 1 and 2, 1 and 3, and 2 and 3, respectively, for the
three-line mapping. The recombination probability between
two adjacent markers is set to 0.25 such that the QTL seg-
regate mostly independently. We used the random forest
mapping method as described in Michaelson et al. (2010)
to infer QTL positions and additive effects. We then used
the QTL found by the mapping algorithm for our selection
test comparing the selective scenario Q1 against neutral
scenario P0.

The results in Figure 2 show that the three-line design is
more effective at detecting selection given a sufficient num-
ber of crosses. However, for a small number of crosses, the
two-line test is more effective. The existence of two regimes
can be understood as follows: at a large number of crosses
between two lines, all or nearly all QTL that differ between
these lines have been detected, and further crosses do not
yield new QTL. Between three lines, however, the number of
diverged QTL is larger, so crosses between three lines can
yield more QTL. The effect thus arises from the competition
between detecting more QTL among those diverged be-
tween two lines and having more diverged QTL available
in three lines but fewer crosses per pair of lines. In our
simulations, the crossover between the two regimes lies
around Mtot = 200–300 crosses, which is a realistic number
in QTL experiments, but of course, this depends on details of
the QTL mapping algorithm and simulation parameters.

So far the increase in statistical power in multiple-line
tests is due to an increase in the number of diverged loci Ldiv
with the number of lines. In order to address other, qualita-
tive effects arising when the number of lines is increased,
Ldiv is kept fixed for the remainder of this paper.

Figure 1 Log-likelihood score (8) and its statistical signif-
icance for a different number of lines. (A) The expected
log-likelihood score (8) is shown for different numbers of
lines at a fixed total number of L ¼ 20 loci. With an in-
creasing number of lines, on average, fewer loci have the
same state in all lines. Hence the number of detectable loci
and thus the score increase with the number of lines. (B)
The expected P-value for scenario Q1 decreases with the
number of lines. Parameters: average selection coefficient
s ¼ Nsa ¼ 1 with mean additive effect a ¼ 0:1 per locus,
L ¼ 20, and multiplicity parameter Vl ¼ 60:2 (each for
half of the loci, respectively). Parameters of the gamma
distribution of additive effects are a ¼ 2 and b ¼ 20.
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Detection of Selection

To probe how well neutral and selective evolutionary scenar-
ios can be distinguished, we applied our test to artificial data
generated under different hypotheses. The number of lines is
set to n ¼ 3 and the number of diverged loci to Ldiv ¼ 10. In
addition to the neutral scenario P0 and the lineage-specific
selection scenario Q1 defined earlier, we also consider a sce-
nario Q2 in which all three lines are under selection but in
different directions (s1 ¼ þs=2, s2 ¼ þs=2, and s3 ¼ 2s=2).
We also test a selective two-line scenario Qtwo with a relative
difference Ds of selection strength between the lines against
the neutral scenario Ptwo (Ds= 0). Analogous to the preceding
section, scenarios Q1 and P0, Q2 and P0, Q2 and Q1, and Qtwo

and Ptwo are compared with each other. For the tests of sce-
nario Q2 against Q1, the selection strengths are chosen to
yield, on average, the same trait difference DT ¼ ðT1 2T3Þ=2.

Figure 4 shows that the log-likelihood score (8) clearly
can distinguish selective and neutral scenarios (Figures 3
and 4), as well as between different lineage-specific selec-
tion scenarios. As expected, the sensitivity of the test
increases with selection strength. The test works in a reason-
able parameter range, allowing us to infer selection strength
with only few loci available (L$ 4 loci for Nsa ¼ 1) and a
reasonable selection strength (Nsa ¼ 1 corresponds to a
probability of 0.88 for a locus to be in the + state forV ¼ 0).

Epistasis and Multiple Segregating Loci

The statistical framework comprising the equilibrium statis-
tics of states (6), the maximum-likelihood estimates of
selection strengths (7), and the log-likelihood scores (8) is
built on a very simple population genetics model. In this
section we explore how the resulting test performs when
specific assumptions behind this model are not fulfilled. To

this end, we do finite-population simulations in a regime
with multiple segregating loci and look at two different
kinds of epistases between loci: phenotype epistasis and
fitness epistasis.

To model phenotype epistasis (character epistasis), we
add a pairwise interaction term to the linear relationship
between QTL states and the trait (1), yielding

T
�fqlg� ¼ XL

l¼1

alql þ
XL
l;m¼1

Jlmqlqm (10)

where J is an L3 L symmetrical matrix describing the inter-
actions between loci. The interaction coefficients fJlmg are
drawn from the same gamma distribution as the effects falg
(and are assigned random signs); however, the average
value of the fJlmg is varied relative to that of al by multi-
plying them by a factor J0=L. Then, for J0 ¼ 1, the cumula-
tive contribution to the trait from the epistatic interactionP

l;mjJlmj is, on average, as large as the contributions from
the linear term

P
lal. The regime of large J0 corresponds to

significant epistasis: in this regime, the trait value T can
change significantly with the change of state of a single
locus. We assume that, as is generally the case, the epistatic
interactions fJlmg are not known.

We perform numerical simulations using a Wright-Fisher
model with and without trait epistasis. The Wright-Fisher
model does not involve recombination, unlike the assump-
tion of the selection test. Starting from a random initial
configuration fqlg for L ¼ 15 loci, a Wright-Fisher model is
simulated with three independent populations of 100 indi-
viduals each evolving overM generations. At the end of each
run, the configuration of loci with the largest fraction in the
population is used to calculate the score (8). We simulate
both the selective scenario Q1 and the neutral scenario P0.
We perform simulations both at high mutation rates leading

Figure 2 Comparing two- and three-line tests on QTL mapping data at a constant number of crosses. (A) We plot the log-likelihood score (8) averaged
over 1000 runs with pairwise crosses either between three lines or between two lines against the total number of crosses. At around 200 crosses, the
three-line design is more effective and leads to higher scores. (B) The expected P-value for scenario Q1 decreases faster with the number of crosses for
three lines. (C) For two lines, fewer QTL can be detected because fewer diverged QTL are available. Thus, for a high number of crosses (where all
diverged QTL can be detected), more QTL can be detected with the three-line design. Parameters: Ldiv ¼ 20 loci diverged between three lines and 100
SNP markers, with every fifth marker being a QTL with additive effects drawn from the gamma distribution with a ¼ 10 and b ¼ 10. Selective scenario
Q1 was used with average selection coefficient s ¼ Nsa ¼ 1 with mean additive effect a ¼ 0:1 per locus.

310 N. Riedel et al.



to multiple segregating loci [mutation rate m ¼ 0:002 over
M ¼ 3000 generations, resulting in 2mLN lnN � 27:6 � 1
(Wilke 2004)] and in a second regime with low mutation
rates (m ¼ 2:53 1025 over M ¼ 25; 000 generations, with
2mLN lnN � 0:35), where there is typically at most a single
segregating locus.

As J0 is increased, the effect of each locus on the trait
becomes coupled to the states of other loci, and the linear
trait model (1) becomes increasingly inaccurate. If the epi-
static interactions in (10) were known, the trait model with
epistasis (10) could be incorporated into the state statistic
(6) to restore the test’s sensitivity. As a result, the power of
our test decreases with J0 (Figure 5). Yet, for weak epistatic
interactions J0 � 1, the results of the test are only mildly
affected. There is no significant difference in the power of
the test between the regimes with and without multiple
segregating loci in the regimes we examined.

For fitness epistasis, we consider a quadratic fitness function
F ¼ 2 se½TðfqlgÞ2T0�2 in place of the linear function (2). T0 is
the trait value giving maximal fitness, and se determines how
quickly fitness decreases away from the maximum. The fitness
parameters T0 and se are chosen such that the mean and var-
iance of the distribution of trait values T equal those under the
model (2) without epistasis at a given value Ns. In this way, the
scenarios with and without fitness epistasis can be compared
directly. We again perform simulations in regimes with and
without multiple segregating loci. Figure 6 shows a very similar
performance of the test on data generated under the linear and
quadratic fitness landscapes in both cases. This is so because
the test evaluates only the probabilities of alleles at individual
loci. Correlations between loci depend on the nonlinearities of
the fitness landscape (Nourmohammad et al. 2013b), but they
do not enter the test.

Beyond epistasis, the results of a QTL-based test for
selection are potentially limited by pleiotropic effects:
a subset of QTL of one trait may affect a second, unknown
trait. If this unknown trait is under selection, but not the
first, a QTL-based test may erroneously lead to the conclu-
sion that the first trait is under selection (because some of its
loci show a signal of selection induced by the second,
unknown trait). Hence the evidence for selection from QTL

statistics pertains to the trait for which the loci were identified
or some unknown trait with substantial overlap of QTL
loci with the trait under study. Conversely, the trait under
study may be under selection (favoring + states, say), but
some of its loci affect another trait also under selection,
favoring 2 states. If the second trait is unknown, the test
would infer a selection strength on the first trait that is
too low. With a small number of lines or loci, the signal of
selection may even be lost altogether.

Testing for Selection at Different Evolutionary Times

Here we probe the statistical power of the equilibrium test at
different evolutionary times. The statistics of states (5) were
derived in the steady state and are reached a long time after
the divergence of the different lines. This equilibration time
depends on, besides the mutation rate, the strength of
selection and the size of mutational targets. In a regime of
long evolutionary times, each locus has changed state many
times since the last common ancestor. In a regime of short
evolutionary times, most loci have not changed their state
(and thus are not detected in crosses), and most diverged loci
have undergone a single change of state over the phylogeny.
With a sufficient number of lines, the two scenarios can be
distinguished easily on the basis of the QTL states in all lines;
in the limit of short times, the states are compatible with
a single mutation event in the phylogeny (for each diverged
locus).

We performed simulations analogous to the ones de-
scribed earlier in the section entitled, Increased Power in
More than Two Lines, but instead of drawing configurations
fq1;l; . . . ; qn;lg from the equilibrium distribution (5), we sim-
ulated for a number of t time-step transitions between states
at each locus with substitution rates m½4Nsia=ð12 e24NsiaÞ�
and m½24Nsia=ð12 e4NsiaÞ� for the transition from 2 to +
and vice versa (Kimura 1962) (see also Appendix A). The
phylogenetic tree used for three lines is shown in Figure A1.
To simulate the transition between short and long evolution-
ary times, we varied the average number of substitutions per
locus mt but kept selection strength Ns ¼ 10 and the number
of diverged loci Ldiv ¼ 10 fixed (Ldiv is smaller than the total

Figure 3 Score statistics for a trait in
two different evolutionary scenarios.
The distribution of the log-likelihood
score (8) under the neutral scenario
P0 and the lineage-specific selection
scenario Q1 are compared for differ-
ent mean values of the selection co-
efficient s ¼ Nsa (averaged over
loci). (A) For small selection coeffi-
cients (s ¼ 0:05), the score distribu-
tions (8) under either scenario are
nearly identical. (B and C) As the
selection strength s increases, the
score distributions clearly separate.

Parameters: three lines, Ldiv ¼ 10, s ¼ Nsa ¼ 0:05, 0.5 and 5, additive effects falg drawn from a gamma distribution with parameters a ¼ 2 and
b ¼ 20 (mean effect a ¼ 0:1 per locus), and multiplicity parameter Vl ¼ 60:2 each for half of the loci, respectively.
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number of mutable QTL loci L when the expected number of
substitutions per locus is smaller than 1). The score and
P-value of the test (8) built on the assumption of long evo-
lutionary time are plotted against the average number of
substitutions (Figure 7). The statistical power decreases only
slightly when going from long to short evolutionary times,
and the test retains some of its statistical power even as mt
goes to zero. The statistics of states in this limit of short
evolutionary times are derived in Appendix A.

Multiple Testing

As emphasized by Orr (1998), a large trait difference be-
tween two lines alone is not sufficient evidence for lineage-
specific selection. Often traits in QTL experiments are picked
from a larger pool of traits; among those, traits that diverged
markedly between lines are chosen for further analysis be-
cause this difference hints at lineage-specific selection. How-
ever, in a sufficiently large set of traits, neutral evolution
alone would produce traits differing between lines. In such
a trait, we also would observe an imbalance of states en-
hancing the trait value in one line and reducing it in the
other. The bias in trait difference and the statistics of states
resulting from a nonrandom choice from a set of traits is
called ascertainment bias (Nielsen and Signorovitch 2003).
Ascertainment bias can lead to nonneutral evolution being
attributed to a trait that evolved neutrally along with a set of
other neutrally evolving traits.

There are two ways to correct for this effect. If the total
number of traits from which the observed trait is taken is
known explicitly, we are faced with a standard multiple-
testing problem. We look at this case first. However, if the
trait is chosen from an ill-characterized set of traits, the
situation is different. We follow the approach of Orr (1998)
and consider the statistics of states conditioned on the
observed trait difference. We will see that in this case there

is a drastic difference between two and more than two
lines.

Holm–Bonferroni Correction

If the total number of observed traits is known, a standard
multiple-testing correction can be applied. An example
is gene expression levels, where traits are analyzed on a
genome-wide level, and the number of genes is known
(Fraser et al. 2010). A suitable multiple-testing correction
for this case is the Holm–Bonferroni correction (Holm
1979), which has the advantage that no independence of
the different hypotheses needs to be assumed. This is par-
ticularly important in QTL analysis because different traits
can be affected by the same genetic loci. The Holm–Bonferroni
correction controls the family-wise error rate (FWER), i.e.,
the false-positive rate not only for a single trait but for
a whole set of traits. If there are m traits for which scenario
Q is tested against the null hypothesis of scenario P, we
calculate the log-likelihood score SQ;P (8) and the corre-
sponding P-values pj for all m traits. The traits are then
ranked according to their P-values with the highest
P-values first. Next, we search for the first trait j for which
pj .a=ðmþ 12 jÞ, where a is the significance threshold for
the FWER. Scenario P then can be rejected for the traits
1; . . . ; j2 1 but not for traits j; . . . ;m.

Conditioning on the Trait Difference

Often, however, the size of the pool from which traits are
picked is not known. Most traits from this pool remained
unnoticed simply because they showed little difference
between lines and were not recognized as interesting traits
for investigation. Orr’s proposal (Orr 1998) for this case is to

Figure 4 Statistical significance of the tests at different levels of selection
strength. Selective scenarios are tested against the neutral hypothesis (Q1

vs. P0, Q2 vs. P0, and Qtwo vs. Ptwo), as well as different selective scenarios
against each other (lineage-specific scenarios Q2 and Q1). The fraction of
instances where the log-likelihood score is statistically significant (P =
0.05; see text) rises steeply with increasing selection strength (mean se-
lection coefficient s ¼ Nsa per locus). Parameters are as in Figure 3.

Figure 5 The effect of phenotype epistasis. We apply the selection test
(8) to data generated under the model (10) with epistatic interactions
between loci. With increasing epistasis strength J0, the power of the test
decreases; however, for weak epistatic interactions J0 � 1, the test
retains most of its power. Simulation parameters: n ¼ 3 lines, L ¼ 15 loci,
effective population size N ¼ 100, average selection coefficient
s ¼ Nsa ¼ 10, mutation rate m ¼ 0:002 and m ¼ 0:000025, and
M ¼ 3000, M ¼ 25;000 generations in the case with and without mul-
tiple segregating loci, respectively. Other simulation parameters are as in
Figure 3.
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use, in place of (6), a statistic of states conditioned on the
empirical trait difference between two lines, i.e., to restrict
the states to those giving rise to the observed T1 2T2. In so
doing, the part of the evidence for selection that comes from
the trait difference between two lines is discarded. Orr
writes the trait difference as R ¼ PL

l¼1alðq1;l 2 q2;lÞ for the
case of two lines. We generalize this notion to the case of
n lines and denote the maximal trait difference across two
lines Rmax ¼

PL
l¼1alðq1;l 2 q2;lÞ, where the lines are ordered

such that line 1 has the largest trait value T1 ¼ PL
l¼1alq1;l

and line 2 has the smallest trait value T2.
Our next step is to calculate the statistic of states

conditioned on a particular value of Rmax. This statistic then
can be used in the log-likelihood score (8) in place of the
neutral null model. Our calculation is based on the principle
of maximum entropy. This general principle applies to sit-
uations with incomplete knowledge on the probability dis-
tribution pðxÞ of some variable x. This distribution must be
consistent with any prior information on x we might have
(e.g., the mean value of x), but otherwise it should be as
unbiased as possible. The principle of maximum entropy
posits that the distribution that best describes the incom-
plete state of knowledge is the distribution that maximizes
the information entropy 2

P
xpðxÞ ln pðxÞ with respect to

pðxÞ, subject to the constraints resulting from prior informa-
tion. Stated in this form first by Jaynes (1957), the principle
of maximum entropy already appears at the core of statisti-
cal physics, where the distribution over configurations x
of a physical system are constrained by the mean energy
hEðxÞi ¼ P

xEðxÞpðxÞ. The maximum-entropy distribution
in this case turns out to be the Boltzmann (exponential)
distribution pðxÞ}e2bEðxÞ, where b is determined by the
mean value of the energy EðxÞ. Other applications of the
principle of maximum entropy are in image reconstruction
(Narayan and Nityananda 1986), language modeling
(Berger et al. 1996), and neural networks (Mora and Bialek
2011). In the context of quantitative traits, the principle of
maximum entropy and the associated calculus of exponen-

tial distributions have been used to estimate unobserved
allele frequencies and to infer selection from trait observ-
ables (Prügel-Bennett and Shapiro 1994, 1997; Ruttray
1995; Berg et al. 2004; Mustonen and Lässig 2005; Lässig
2007; Mustonen et al. 2008; Barton and De Vladar 2009; De
Vladar and Barton 2011; Nourmohammad et al. 2013a, b).
Here we use the principle of maximum entropy to derive the
statistics of states conditioned on the largest trait difference
Rmax. A pedagogical example is given in Appendix B.

Starting from the neutral null model P0, we derived the
neutral null model Phðq1; . . . ; qnja;VÞ conditioned on the
trait difference, i.e., with an additional parameter h deter-
mining the value of Rmax. This distribution is obtained by
maximizing the information entropy

HðPÞ ¼2
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with respect to Phðq1; . . . ; qnja;VÞ. Here Pðq1; . . . ; qnjVÞ
refers to the neutral null model P0. The sum over all possible
states qi ¼ 61, i ¼ 1; . . . ; n, for a given locus again excludes
the two unobserved states with q1 ¼ ⋯ ¼ qn. The maximi-
zation is subject to two constraints, implemented by Lagrange
multipliers—l0 to implement the normalization of Ph and h
to implement the constraint that the largest trait difference
Rmax equals the expected value

P
lhalðq1;l 2 q2;iÞi under Ph

Figure 6 The effect of fitness epistasis. The selection test (8) is applied to
data generated under a model with a quadratic fitness function (see text).
The results are very similar to the result without epistatic interactions in
regimes both with and without multiple segregating loci. Simulation
parameters are as in Figure 5.

Figure 7 The power of a test based on equilibrium statistics (6) over
different evolutionary times. The significance of the three-line equilibrium
selection test decreases only slightly with decreasing number of state
changes per locus since the last common ancestor (corresponding to
shorter evolutionary timescales). Both at intermediate times and even
for short evolutionary times the equilibrium test retains most of its power.
Parameters: evolutionary scenario Q1 tested against P0, average selection
coefficient s ¼ Nsa ¼ 1, number of diverged loci Ldiv ¼ 10, t1 ¼ t2 ¼ 50
steps, and m ¼ 0:00022 0:06.
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(see Appendix B). Setting the derivative of the information
entropy (11) with respect to Phðq1; . . . ; qnja;VÞ equal to zero
gives the state statistics of a locus with additive effect a and
multiplicity parameter V as

Ph
�
q1; . . . ; qn

���a;V� ¼ ehaðq12q2ÞþV
Pn

i¼1
qi

P9
fq91;q92;...;q9n¼61g

ehaðq912q92ÞþV
Pn

i¼1
q9i

(12)

The parameter h is set such that the mean trait difference
under (12) (summed over all L loci) equals the trait differ-
ence Rmax observed in the data.

The maximum-entropy statistic Ph conditioned on Rmax

will be used to describe the statistic of states under neutral
evolution and with ascertainment bias. The resulting log-
likelihood score

SQ;Ph ¼
XL
l¼1

ln
Q
�
q1;l; q2;l; . . . ; qn;l

��al;Vl
�

Ph
�
q1;l; q2;l; . . . ; qn;l

��al;Vl
�

" #
(13)

compares evolution under selection and neutral evolution
with ascertainment bias. This score depends on the ascer-
tainment parameter h; extremizing the score with respect to
h sets the expected value of the trait difference under the
conditioned model Ph equal to the trait difference observed
in the data.

In the case of two lines, it turns out that the probabil-
ities for the two observable states 2þ and þ2 ,
Phðq1; q2Þ ¼ ehaðq12q2Þ=C, are the same as for the selective
model at equilibrium, Qðq1; q2Þ ¼ eDsaðq12q2Þ=C (the multi-
plicity parameters cancel for q1 ¼ 2 q2). Maximizing the
score with respect to h, the statistics of states with ascertain-
ment bias and under selection are exactly the same, making
it impossible to distinguish selection from neutral dynamics
and ascertainment bias. As a result, the log-likelihood score
comparing evolution under selection at equilibrium with the
neutral statistic conditioned on the observed trait value is
exactly zero. Hence, for two lines at equilibrium, it is not
possible to statistically distinguish neutral evolution with
ascertainment bias from the effect of selection.

A key difference between our log-likelihood score and
Orr’s test is that Orr uses not only the empirically observed
additive effects {ai} available from crossing experiments but
also additive effects drawn from a plausible distribution P(a).
Orr’s test can appear to yield significant results when calculat-
ing the trait difference R using the additive effects empirically
determined from crosses but uses a different set of additive
effects drawn from some distribution P(a) for P-value compu-
tations. Consistent with this, Rice and Townsend (2012b)
found that the outcome of Orr’s test strongly depends on
the assumptions made on that distribution and that the test
can produce nonsensical results in particular cases.

This situation is fundamentally different for more than
two lines. For more than two lines, the statistic of states in

the selective scenario in equilibrium (12) differs from the
neutral scenario, and the score (13) generally gives nonzero
results both at equilibrium and at short evolutionary times.
(However, again there is a particular selection scenario
s1 ¼ þs, s2 ¼ 2 s, s3 ¼ 0, . . . ; sn ¼ 0 that is not distinguish-
able from neutral evolution conditioned on Rmax.)

To test these different approaches to the multiple-testing
problem, we examined a multiple-testing scenario in which
a trait was picked from a larger set of traits. This multiple-
testing scenario followed the lines of Anderson and Slatkin
(2003). First, states fqi;lg were drawn at random for m ¼ 5
traits and three lines evolving neutrally. Then the traits were
sorted according to the maximal trait difference Rmax across
lines. The trait with the highest Rmax was tested for selection
using selective scenario Q1 against the neutral scenario. We
did this in three ways: by using the score (8) without a multiple-
testing correction, by applying the Holm–Bonferroni correc-
tion assuming that the number of traits is known, and by
conditioning on Rmax using (13). Repeating this procedure
many times over, we computed the false-positive rate (type I
error rate) for all three approaches (Figure 8). Second, we
generated the statistic of states of one trait under the selective
scenario Q1 and for the other traits under the neutral scenario
P0. Then we determined how often the trait under selection
was correctly identified by the different approaches (true-
positive rate) with a P-value , 0.05 (0:05=m for Holm–

Bonferroni). Figure 8 shows that, as expected, a test without
correction yields the highest rate of true positives. Yet it also
suffers from the highest false-positive rate because many neu-
trally evolving traits happen to have a high Rmax leading to
a high score (8). The Holm–Bonferroni method and the con-
ditioning on Rmax both have lower false-positive rates. This
result for the conditioning on Rmax is in accord with that of
Anderson and Slatkin (2003), who found that Orr’s test,
which uses a similar correction scheme, also led to conserva-
tive test statistics. Because the false-positive rate of the Holm–

Bonferroni method is the lowest, it is to be preferred when
the size of the pool of traits is known.

While the maximum trait difference Rmax is a plausible
observable on the basis of which traits can be selected from
a larger pool, it is by no means the only one. For instance,
with three lines, traits could, in principle, be selected based
on the difference between the trait in line 1 and the trait
mean in lines 2 and 3, RD ¼ T1 2 ½ðT2 þ T3Þ=2�. We would
use this observable when looking specifically for traits with
lineage-specific selection acting on line 1. For s2 ¼ s3 [ s0,
the fitness (2) can be written as

FðT1;T2;T3Þ ¼ sðT1 þ T2 þ T3Þ þ ŝ
�
T1 2

T2 þ T3
2

�
(14)

where s ¼ ðs1 þ 2s0Þ=3, and ŝ ¼ s1 2 s ¼ 2ðs1 2 s0Þ=3. The
maximum-entropy distribution conditioned on RD is
expflRDg (up to a normalizing constant) and thus again differs
from the equilibrium distribution } exp

n
bF

�
T1;T2;T3

�o
, ex-

cept in the special case s ¼ 0.
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Selection on Plant Quantitative Traits

In this section we apply the multiple-line selection test to
data from two studies of plant quantitative traits. Our first
example is based on QTL data on corolla (petal) sizes in
three different plant species of the genusMimulus.M. guttatus,
M. platycalyx, and M. micranthus are labeled lines 1, 2, and
3, respectively. At each locus detected by Chen (2009), it
turns out that there are two alleles with very similar effect
on the trait (within experimental error) and one allele with
a significantly different effect. If there is a single high allele,
we assign it the + state, while the two other alleles are
assigned the 2 state, and vice versa. Additive effects for
the states are computed by averaging the additive effects
listed for different alleles over alleles corresponding to the
same state. The resulting states and additive effects for the
corolla width and corolla length traits are listed in Table 1.

Log-likelihood ratios for the pairwise comparisons of the
evolutionary scenarios P0, Ph, and Q1 are calculated as de-
scribed in the section entitled, Inference and Hypothesis Testing
for Different Evolutionary Scenarios. These scenarios describe
neutral evolution, neutral evolution in the presence of ascer-
tainment bias, and lineage-specific selection, respectively. For
each scenario, the multiplicity parameters and (in the case of
scenario Q1) selection strength are calculated according to (7).
Where applicable, we use the Bayesian information criterion
described earlier to correct scores for different numbers of free
parameters of the underlying models. This leaves P-values un-
affected. When testing against a neutral scenario, we use either
scenario Ph (conditioning on R) or scenario P0 (Holm–Bonferroni
correction). In the first case, we condition the null model on

the pair of lines with the highest trait difference for each trait.
For the Holm–Bonferroni test, we take the ad hoc choice of
m ¼ 5 as the total number of traits in this data set because
five different traits are analyzed in the QTL experiment in
Chen (2009). However, this choice is artificial because we
do not know the potentially much larger set of traits from
which these five traits were chosen.

We start with the corolla width trait, where seven QTL
have been identified along with their additive effects (Chen
2009). Comparing scenario Q1 against Ph described by (12)
gives a log-likelihood score (13) of SQ1;Ph ¼ 0:38 in favor of
the selective scenario. We test the significance of this score
by repeated simulations under scenario Ph at fixed additive
effects falg. The ascertainment parameter h is set such that
the conditioned neutral model gives, on average, the trait
difference R12 observed in the data. For each configuration
drawn from Ph, we sort the lines according to their trait
values T. In this way, we account for the possibility that
under neutrality, fluctuations create patterns of lineage-
specific selection in any of the lines (rather than only in
what is called line 1 here). A P-value of 0.13 is obtained.

The unconditioned test together with the Holm–Bonferroni
correction yields a similar result. In testing of scenario Q1

against P0, the score SQ1;P0 ¼ 1:90 corresponding to a P-value of
0.05 is obtained. With the Holm–Bonferroni correction, how-
ever, a more stringent P-value cutoff of less than a=m ¼ 0:01
for the family-wise error a ¼ 0:05 andm ¼ 5 has to be applied.

A preference for a selective model is in agreement with
the different reproductive modes of these species (Chen
2009): line 1 reproduces predominantly by outcrossing (so
that large floral characters are needed to attract pollinators),
whereas lines 2 and 3 are mostly self-pollinating (but still
maintain a certain degree of outcrossing). In the latter spe-
cies, large petals are less indispensable for reproduction but
nevertheless require resources to develop and maintain.

Next, we examine the corolla length trait, where six QTL
were observed (Table 1) and the maximal trait difference is
R13 between lines 1 and 3. Here the comparison to the

Figure 8 Comparing tests with different multiple-testing corrections. The
statistical significance obtained without a multiple-testing correction, the
Holm–Bonferroni correction, and by conditioning on Rmax are compared
with each other. For three lines, the corrected tests both have a lower
statistical significance (i.e., a higher P-value) but also a lower false-positive
rate (type I error rate). The false-positive rate can be read off at the very
left of the plot as the fraction of significant outcomes under neutrality
(s ¼ 0). The high false-positive rate of 0.20 without correction is reduced
to 0.044 for the Holm–Bonferroni correction and to 0.11 for conditioning
on Rmax. Conditioning on Rmax gives a higher true-positive rate for small
selection strength than the Holm–Bonferroni correction but results in
a higher false-positive rate for a given significance threshold a (see text).
Parameters: m ¼ 5 traits, and significance threshold a ¼ 0:05 in all three
cases. The other parameters are as in Figure 3.

Table 1 Additive QTL effects for two flower traits of M. guttatus,
M. platycalyx, and M. micranthus estimated from Chen (2009)

Additive effect al M. guttatus M. platycalyx M. micranthus

Corolla width (mm):
0.41 2 þ 2
0.74 þ 2 2
0.39 þ 2 þ
0.59 þ 2 2
0.28 þ þ 2
0.64 þ 2 2
0.37 þ 2 þ

Corolla length (mm):
0.67 þ 2 2
0.41 þ þ 2
0.21 þ 2 þ
0.60 þ 2 2
0.27 2 þ þ
0.51 þ þ 2
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neutral null model yields the score SQ1;Ph ¼ 2 0:43 (P =
0.54), so the neutral hypothesis cannot be rejected, and simi-
larly for the Holm–Bonferroni procedure (SQ1;P0 ¼ 1:04, P =
0.14, implying a substantial family-wise error).

For comparison, we also apply Orr’s sign test (Orr 1998)
(not the equal-effects version) to this data set. Because Orr’s
test is a two-line test, we apply it to the two lines with the
largest trait difference, where one would expect the stron-
gest signal for selection. Following Orr, the additive effects
falg are taken from a gamma distribution whose parameters
for each trait are estimated by maximum likelihood. Then
the probability of finding at least the observed number of +
states in the high line given the observed trait difference R or
greater is calculated according to equation (4) in Orr’s paper
(Orr 1998). For the corolla width trait, five of six diverged
loci in lines 1 and 2 have the + state. Here Orr’s test returns
a P-value of 0.42. For the comparison of lines 1 and 3, the test
gives P = 0.29. For the corolla length trait, four of five di-
verged loci are in the + direction between lines 1 and 3, and
three of four diverged loci in the + direction between lines 1
and 2. Orr’s test yields P-values of 0.48 and 0.72, respectively.

Our second example is based on QTL data on photope-
riod response traits of four different maize strains. The
photoperiod response of a trait is defined as the trait
difference observed between specimens grown in an envi-
ronment with long days and specimens grown in a short-day
environment. We consider the traits’ days to anthesis (the
time from planting to full flower development) and days to
silking (silk emergence in maize), both measured in growing
degree-days (daily average temperature above a threshold
temperature of 10� cumulated over days of growing). For com-
parison, we also look at plant height, which is not directly
linked to day length. For maize, it has been shown that the
architecture of quantitative traits such as flowering time and
leaf size accurately follows a model with additive trait effects
and only weak epistatic effects (Buckler et al. 2009; Tian et al.
2011). Coles et al. (2010) provided the additive effect of alleles
from different QTL and the corresponding experimental errors.
For each locus, it is specified which lines harbor an allele with
the same effect on the trait (within experimental error). As in
Mimulus earlier, most of the loci show alleles that have one
of two experimentally distinguishable effects on the trait.
In such cases, the + and 2 states can be unambiguously
assigned to each line and locus, and the resulting values for
fqlg and falg are collected in Table 2. Yet about a third of
the loci show more than two significantly different effects on
the trait or have one line where the experimental error on the
effect on the trait is so large that it cannot be assigned un-
ambiguously to one of the two states. Loci with such unclear
assignment of states are excluded from the analysis.

Two of the lines in Coles et al. (2010) (B73 and B97) are
taken from temperate climates featuring long days in sum-
mer and short days in winter, while the other two (CML254
and Ki14) are taken from tropical environments with con-
stant day lengths over the year. Thus we use as the simplest
evolutionary scenario Q4 (NsB73 ¼ 2Ns, NsB97 ¼ 2Ns,

NsCML254 ¼ þNs, and NsKi14 ¼ þNs), with only a single free
parameter s. We compare this selective scenario Q4 against
the null model P0 from (6) with n ¼ 4.

We first consider the growing degree-day to anthesis
(GDDTA) trait, which measures the time to full flower de-
velopment. For tropical lines, which are not adapted to long
day lengths, the flowering time is reduced for specimens
grown in temperate latitudes compared to tropical environ-
ments (Coles et al. 2010). For the temperate lines, no dif-
ference in flowering time is observed between the different
environments. For this trait, four of seven loci show a clear
two-state pattern. We first apply scenario Ph conditioned on
R32. In this case, the straightforward maximum-likelihood
estimate of the parameter h fails because all states in the
high line are + states and all states in the low line are 2
states, leading to a diverging h/N. We use a lower-bound
estimate for h by determining the value of h for which the
probability of seeing this extreme configuration equals pe.
pe ¼ 0:1 is chosen to obtain a conservative estimate for h.
For consistency, Ns is determined in the same way. The log-
likelihood score (8) then gives SQ4;P0 ¼ 2:77 (P = 0.07) in
favor of the selective scenario. The Holm–Bonferroni correction
yields a result consistent with this (SQ4;P0 ¼ 5:06, P = 0.045).

For the growing degree-day to silking (GDDTS) trait, with
four two-state loci of six, the score SQ4;Ph ¼ 2:77 (P = 0.048)
favors the selective scenario over the neutral null model as
well. Again, Ph is conditioned on R32, and the lower bound
for h is used as described earlier. Using the Holm–Bonferroni
correction, one obtains a similar result (SQ4;P0 ¼ 5:06, P =
0.030). The plant height trait, however, with four two-state
loci of six, yields the scores SQ4;P0 ¼ 2 0:61 (P = 0.42) un-
der conditioning and SQ4;P0 ¼ 2 0:90 (P = 0.022) with the
Holm–Bonferroni correction in favor of the neutral model.
Here h was again determined by maximum likelihood, and
the conditioning was on R34. The other traits investigated in
the study (Coles et al. 2010) (i.e., growing degree-day anthesis–
silking interval, ear height, and total leaf number) have fewer

Table 2 Additive QTL effects for three quantitative traits in the
four maize lines B73, B97, CML254, and Ki14 estimated from
Coles et al. (2010): growing degree-days to anthesis (GDDTA),
growing degree-days to silking (GDDTS), and plant height

Additive effect al B73 B97 CML254 Ki14

GDDTA (GDD):
4.73 2 2 þ þ
3.85 2 2 þ 2
4.43 2 2 þ 2
11.13 2 2 þ þ

GDDTS (GDD):
6.33 2 2 þ þ
6.20 2 2 þ 2
4.68 þ 2 þ þ
5.68 2 2 þ þ

Plant height (cm):
1.10 2 2 þ þ
1.25 þ þ 2 2
1.73 þ 2 þ þ
2.10 2 þ þ 2
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two-state loci (#3), and none of these traits show a significant
support for either of the two hypotheses (data not shown).

Again, we also apply Orr’s test for comparison. We com-
pare the two lines B73 and CML254, which show the largest
trait difference both in the GDDTA trait and the GDDTS
trait. For the GDDTA trait, six of six diverged loci have
the + state, giving a P-value of 0.13. For the GDDTS trait,
five of five diverged loci go in the + direction with P = 0.2.
A summary of the results can be found in Table 3.

In both case studies, the statistical significance of the
evidence for a particular evolutionary scenario is limited by
the number of identified trait loci. With a higher number of
crosses in the original studies, identifying more trait loci, we
expect a stronger statistical signal.

Conclusions

In this paper we developed a statistical framework to
quantify the evidence for different evolutionary scenarios
from QTL data for more than two lines. We find that using
more than two lines not only increases the statistical power
of selection tests but also increases their scope: for more
than two lines, signals of selection can be distinguished from
the effects of ascertainment bias. We applied our test to QTL
data on floral characters in different Mimulus species and
photoperiod response traits in maize.

Applying our test to very large numbers of lines poses
interesting challenges in connection with the number of alleles
per locus and the rapid growth of the number of possible
evolutionary scenarios. At the same time, the need for ex-
perimental crosses between three or more different lines is
a major bottleneck of the multiple-line test. Because of the
additional experimental work involved, there are currently few
data sets on QTL and their additive effects in more lines than
two. However, recent studies employing crosses of 25 maize
lines and detecting around 30–40 QTL per trait give a promis-
ing outlook to the future (Buckler et al. 2009; Tian et al. 2011).

A possible application of this test is the inference of gene
expression adaptation using expression QTL (eQTL) (Fraser
2011). Because the number of eQTL is typically small for
a single gene, the test could be applied on gene modules,
e.g., genes belonging to the same pathway or protein complex,
allowing one to infer selection on individual pathways. Another
future perspective for this method may arise if genome-wide
association studies (GWAS) with fully sequenced organisms
enable the inference of causal mutations behind QTL effects
(Mackay et al. 2009; Manolio et al. 2009), allowing one
to apply multiple-line tests without the need to perform
crosses between different lines (Fraser 2013).
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Appendix A: Short-Time Dynamics
The statistics of states (6) were derived in the limit of long evolutionary times (equilibrium). In general, the statistics of
states depend on the lengths of branches of the phylogenetic tree (which we assume to be known). In this appendix we
derive the statistics of states in the limit of short evolutionary times and derive the corresponding log-likelihood score. At
short evolutionary times, at most one mutation changing the state has fixed at each locus and across the phylogeny.

Again, we consider loci that are monomorphic in each population and identical initially. Then a mutation appears in one
population and (with a certain probability) is fixed. The fixation probability depends on fitness, so the relative frequencies of
such events at different loci allow in principle the inference of selection. Such short evolutionary times are characterized by
nmt � 1; nevertheless, the total number of diverged loci, characterized by nmtL (where n is the number of lines and L is the
total number of mutable loci affecting the trait), still must be at least of order 1. Because our observable is the relative
number of times mutations have fixed in one particular line (relative to other lines), the total number of mutable loci does
not enter the statistics of states. In the regime of short evolutionary times, the ancestral states of the loci and the phylogeny
of the lines affect the statistics of states, so general results for n lines are unwieldy. Here we compare the cases of n ¼ 2 and
n ¼ 3.

We start with the case of two lines and consider a locus where one line has undergone a single change of state since the
last common ancestor. This change can occur in either line; the relative probabilities for the change to occur in a particular
line equal the relative rates at which the transition between states occurs in the two lines. The transition rates between states
(substitution rates) in a given line are

mþ
4Nsia

12 e24Nsia
and m2

24Nsia
12 e4Nsia

(A1)

for the transition from c = 2 to qi = + and c = + to qi = 2, respectively (Kimura 1962) (the factor 4 comes about because
the phenotype changes by 2a during the transition). In general, the mutation rates mþ (from 2 to +) and m2 (from + to 2)
will be different. Yet, for the relative probabilities of a mutation in one of the lines given the ancestral state, a difference in
mutation rates does not play a role because both lines start with the same ancestral state. This leads to the probability for the
transition to occur in line i

P
�
ija; c� ¼ sc

�
a;Nsi

�
sc
�
a;Ns1

�þ sc
�
a;Ns2

�   (A2)

where we define the shorthand scða;NsÞ ¼ ½24Nsca=ð12 e4NscaÞ�. si (i = 1, 2) is the selection strength on the trait in line i.
Given two lines, both final configurations ðq1; q2Þ ¼ ðþ2 Þ and ð2þÞ can be reached from either ancestor c ¼ 6.

If the ancestral states are unknown, one can average over both possible ancestors. Writing the probability of ancestral
state c as PðcÞ ¼ ecNsanca and relative rates as scða;NsÞ, the dependence on the multiplicity parameter drops out again, and we
obtain
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We have assumed that the distribution of states in the ancestral line has reached equilibrium under some selection strength
sanc, which will be inferred by maximum likelihood.

Considering three lines, four of the six possible diverged configurations can be assigned a unique ancestor: denoting line 3
as the outgroup (Figure A1), configurations ðq1; q2; q3Þ ¼ ðþ2 2 Þ and ð2þ 2 Þ diverged from the ancestral state c ¼ 2
and configurations ð2þþÞ and ðþ2þÞ from ancestor c ¼ þ. Configurations ðþ þ 2 Þ and ð22þÞ can be reached either
by a mutation in the ancestor of lines 1 and 2 or by a mutation in line 3. One can write the relative probabilities of the six
state configurations excluding q1 ¼ q2 ¼ q3 as

22þ ðt1 þ t2Þ Pð2 Þ s92ða;Ns3Þ þ t1Pð þ Þsþða;Ns12Þ
2þ 2 t2P ð2 Þ s2ða;Ns2Þ
þ2 2 t2P ð2 Þ s2ða;Ns1Þ
þ þ 2 t1P ð2 Þ s2ða;Ns12Þ þ ðt1 þ t2Þ P ð þ Þsþða;Ns3Þ
þ2þ t2P ð þ Þ sþða;Ns2Þ
2þþ t2P ð þ Þ sþða;Ns1Þ

(A4)
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where the times t1 and t2 account for the different branch lengths of the phylogenetic tree (Figure A1). With these relative
probabilities, the statistics of states in the three lines are

Qsðq1; q2; q3jaÞ ¼ 1
Z

n
t2P

�
k
�
sk
�
a;Nsq¼2k

�þ dq1;q2 t1 �
h
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�
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s2k

�
a;Ns12

�io
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where we define the shorthand k ¼ q1 þ q2 þ q3 ¼ 61, and Nsq¼2k denotes the selection strength of the line with
the minority state [e.g., Ns3 for the configuration ð22þÞ], and Z ¼ P9

q1;q2;q3¼61Qsðq1; q2; q3jaÞ. Again, the two states with
q1 ¼ q2 ¼ q3 are excluded from this sum.

Analogous to the equilibrium case, the statistics of states (A5) for different hypotheses P0 and Q1 and so on enter a log-
likelihood score of the form (8). To compare the resulting tests under different evolutionary scenarios, we perform numerical
simulations at short evolutionary times, as in the section entitled, Testing for Selection at Different Evolutionary Times. No
knowledge of the ancestral states is assumed. Under the selective scenario Q1, we find that the statistical power of the short-
time test on three lines on short-time data is somewhat lower than that of the three-line equilibrium test applied to data for
long evolutionary times at the same number of diverged loci (Figure A2) but still allows us to detect selection. However,
for two lines, the test under conditioning on Rmax gives hardly any significant results (Figure A2), while the Rmax conditioning
for three lines, as well as the Holm–Bonferroni correction for two and three lines, allows to infer selection in a reasonable
parameter range.

Appendix B: Pedagogical Example for the Maximum-Entropy Principle

Here we give a simple concrete example to illustrate the link between ascertainment bias and the maximum-entropy
principle. Consider a uniform distribution pðxÞ on the interval ½0;   1�, from which 10 numbers are drawn independently
(Figure B1, left). If one repeatedly draws such sets of 10 numbers, the sum over each set will fluctuate from set to set with
a mean value of 5. In the next step, we only retain those sets whose sum is close to some value of m 6¼ 5. The numbers in

Figure A1 Phylogenetic tree for three lines. In the short time limit, the states ðq1;q2;q3Þ, which can be reached by a single mutation from an ancestral
state c, depend on the phylogenetic tree. The branch lengths t1 and t2 and selection strengths determine the relative mutation probabilities in the
different branches.

Figure A2 Statistical significance of the tests for short evolutionary times. In three lines, the selection test for short evolutionary times applied to artificial
data created in the short time limit shows less statistical power than the equilibrium test applied to data generated at long evolutionary times but still
allows us to identify selection in a reasonable parameter range. However, for two lines under conditioning on Rmax, the short time test barely has any
statistical power, analogous to the equilibrium case, where it has none. Parameters: the phylogenetic branch lengths t1 and t2 are taken equal to each
other. The other parameters are as in Figure 3.
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these sets follow a nonuniform distribution, and for m. 5, we find that larger values x appear with a higher probability than
the uniform distribution (Figure B1, right). Although each of these numbers was drawn originally from the uniform
distribution, retention of sets with a particular mean value introduces a bias in the observed distribution of x. This is the
ascertainment bias induced by conditioning the sum of each set. The principle of maximum entropy allows us to determine
the exact form of this biased distribution pðxÞ. We maximize the relative information entropy between the distribution pðxÞ
and the original (uniform) distribution p0ðxÞ ¼ 1 for x 2 ½0; 1�

Hð pÞ¼2

Z
0

1

dx   pðxÞ log pðxÞ
p0ðxÞ (B1)

subject to the constraints
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N
(B2)

where N ¼ 10 is the size of each set. Here the first constraint ensures the normalization of pðxÞ, and the second constraint
fixes the mean value of x to m=N. Introducing Lagrange multipliers to maximize (B1) subject to the constraints (B2) leads to
maximization of (Jaynes 1957)
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with respect to p
�
x
�
. Differentiating (B3) with respect to p and setting the derivative to zero give

p
�
x
� ¼ el2xþl121 (B4)

Ascertainment bias thus makes x exponentially rather than uniformly distributed, with coefficients l1 and l2 determined by
the constraints (B2). For m ¼ 8 and N ¼ 10, we obtain l1 � 2 1:62 and l2 � 2:67; the result for pðxÞ shown in Figure B1
agrees perfectly with the histogram of numbers in sets with a constrained sum.

Suppose that we did not know whether the original distribution pðxÞ from which the data were drawn was uniform or not
and we had access only to data subject to the known constraint. If the distribution of the empirical data deviates from or
agrees with the maximum-entropy distribution pðxÞ, then this deviation or agreement could be used to quantify the likeli-
hood that the original data came from the uniform distribution (vs. an alternative hypothesis). We follow the analogous
approach with the score (B1) to tell whether a particular statistic of states more likely comes from neutral evolution in
combination with ascertainment bias (vs. an alternative scenario involving selection).

Finally, we sketch the derivation of the equilibrium statistics of states PðqÞ, which also follow an exponential form (Iwasa
1988; Berg et al. 2004; Sella and Hirsh 2005). For a finite population evolving under genetic drift and selection at low
mutations rates, Kimura (1962) gives the rate at which a mutation appears and spreads to fixation as

Figure B1 A biased distribution can be
inferred with the maximum-entropy method.
Ascertainment leads to a biased distribution,
which is derived using the maximum-entropy
method. (Left) Histogram for 1000 sets of 10
random numbers each drawn from a uniform
distribution (red line) in the interval [0,1].
(Right) Only sets of numbers are retained that
have a sum S close to m ¼ 8 (7:95, S,8:05).
In these sets, higher numbers appear more of-
ten than in the uniform distribution. The biased
distribution takes on an exponential form given
by the maximum-entropy distribution (B4) (red
line).
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uDF ¼ mN
12 exp

	
22DF



12 exp

	
22NDF


 (B5)

where DF is the fitness difference relative to the preexisting allele, and m is the mutation rate. This rate obeys an exact
relationship for forward and backward mutations uDF=u2DF ¼ expf2ðN2 1ÞDFg (detailed balance). Approximating N21 by
N, the equilibrium distribution over alleles is then �exp{2NF} (Van Kampen 2007), where F is the fitness function of alleles.
Grouping together alleles corresponding to the same state of a locus yields (4). When F is linear in the states of loci, the
corresponding probability distribution factorizes of loci.
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