
Supporting Text

In the supplementary material we first give additional
details on the alignment algorithm and then discuss a
simple procedure for identifying larger modules gen-
erating multiple smaller subgraphs.

The algorithm proceeds in four stages:

1. By enumeration all unique non-treelike sub-
graphs of size n are found. We consider only sub-
graphs where each node carries at least two inter-
nal links, other than self-links (“exclusion of dan-
gling links”). The reason is that including dan-
gling links would generate from each subgraph
an artificially inflated family of subgraphs gen-
erated by including all combinations of neighbor-
ing nodes into the subgraph. The enumeration is
done by first finding all closed paths in the graph
of length shorter than 2n − 3. (The maximum
length derives from considering the non-treelike
structure with the longest pathlength from the
origin through all points of the subgraph back
to the origin. The graph is considered as undi-
rected at this stage.) The subgraphs are labeled
by α = 1, . . . , pmax.

2. The pairwise minimal mismatch Mαβ for all
pairs of subgraphs α, β is found by enumerating
all n! possible alignments of each pair of sub-
graphs. For each pair of subgraphs α and β we
determine whether they overlap by counting the
number of nodes they have in common. The ele-
ments of the coupling matrix M̃αβ in the Hamil-
tonian 11 are given by Mαβ if the subgraphs do
not overlap, and by a large number, chosen to
be 10, if they do.

3. The next task is to select a subset of the sub-
graphs such that the total score 10 is maximized
at given values of the scoring parameters. To this
end simulated annealing is used, with the (nega-
tive) score as the energy function, increasing the
inverse temperature from 0 to 10 in 1000 Monte-
Carlo sweeps. We assign each subgraph a spin
variable: spin sα = 1 implies that the subgraph
α is included in the alignment, spin sα = 0 that
it is not. The contribution to Eq. 10 from the
mismatch of two subgraphs acts as a coupling be-
tween their spins, the contribution of subgraph
α to the total number of links L in 10 acts as a
local field, resulting in the Hamiltonian 11. The
evaluation of the last term in 10, log(Z/Z0), is
discussed below.

The last step is repeated at different values of σ and
µ in order to perform the parametric optimization
leading to Fig. 2b. The parameter σ0 describing the
null ensemble, on the other hand, is determined inde-
pendently by considering the non-treelike subgraphs
found in the randomized graph as described in the
paper. σ0 is chosen such that the average number
of internal links in the ensemble of uncorrelated sub-
graphs with an enhanced number of links 5 equals
that of the non-treelike subgraphs found in the ran-
domized network,

1

p

p∑
α=1

〈L(cα)〉σ0,µ=0 = Lrandomized .

Note that the ensemble 5 still depends on the con-
nectivities of the nodes in each subgraph. The gen-
eralization to several groups of subgraphs, where only
subgraphs from the same group are aligned with each
other, can be done by admitting more states of the
Potts-like spins sα. For q-state spins this would group
the subgraphs into q − 1 clusters much like in super-
paramagnetic clustering (1).

There are two approximations behind this algo-
rithm. First, treelike subgraphs are excluded from
the start. This step cuts down an enormous number
of combinatorial possibilities associated with treelike
subgraphs, which, different connectivities apart, are
always locally similar.

Second, it uses the minimal mismatch obtained
from the pairwise alignment of subgraphs (step 2),
even though the minimal mismatch obtained by
aligning a set of more than two subgraphs may be
higher than that of the sum of pairwise alignments.
This is easily seen by comparing the total number
of alignments of all pairs chosen from p subgraphs,
(n!)p(p−1)/2, with the number of alignments of p sub-
graphs, (n!)p. However, in the case of interest, where
the graph contains multiple copies of a motif (possi-
bly corrupted by noise), the sum of pairwise minimal
mismatches will typically be very close to the mini-
mal mismatch obtained from aligning all subgraphs
simultaneously.

The maximal-score alignment A$(σ, µ) turns out
to be unique in most subgraphs. To see this, con-
sider all alignments Aα of a particular subgraph α
with respect to the other subgraphs whose alignment
is kept fixed. Two different alignments have the same
score if and only if there is a permutation of the
nodes rα

1 , . . . , rα
n leaving both the adjacency matrix

cα
ij and the matrix wα

ij defined above Eq. 4 invariant.



While symmetries of the adjacency matrices occur
frequently, entries of the matrix wij are unique in
most subgraphs, since the connectivities in biological
networks are broadly distributed.

We now discuss the normalizing constant 9 of the
alignment ensemble 8. We approximate the likeli-
hood of given parameter values, which involves the
sum over all alignments A as in 9, by the corre-
sponding maximum-score alignment. (In the liter-
ature for sequence alignment, this is known as the
Viterbi approximation.) An improved likelihood es-
timate is possible using probabilistic graph align-
ment algorithms but is not expected to alter our re-
sults qualitatively. The optimal alignment has p$ ≡
p$(σ$, µ$) subgraphs with average internal link num-
ber L

$
≡ L

$
(σ$, µ$) and fuzziness M

$
≡ M

$
(σ$, µ$).

As may be seen by differentiation of 10 with respect
to the scoring parameters, at σ = σ$ and µ = µ$ the
Q ensemble fits to the data set in the sense that the
expectation values of the internal link number and
the fuzziness equal the actual values,
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p

p∑
α=1

〈L(cα)〉σ!,µ! = L
$
,

1

p2

p∑
α,β=1

〈M(cα, cβ)〉σ!,µ! = M
$
.

The normalizing constant 9 needs to be computed
for two sets of parameters; for σ, µ characterizing
the Q ensemble, and for σ0, µ0 characterizing the
Q0 ensemble. In both cases the normalizing constant
consists of a trace over the link configuration {cα}
in all subgraphs. Since the constant 9 factorizes in
the link labels i, j, we consider only a single of these
factors (a single “string”), drop the i, j indices, and
separate the bilinear form of the pairwise mismatch
3 into a quadratic and a linear part.

Formally, this expression is the partition function
of a mean-field ferromagnet in a fluctuating field. The
field depends on the local connectivities of each node
along the “string” via the ensemble P0, Eq. 4. Using
a Hubbard-Stratonovich transformation to linearize
the quadratic term, the trace over {cα} can be per-
formed, giving

Z =

∫
dt√
2π/p

exp

{
−pt2/2 +

p∑
α

gα(t)

}
, [12]

where

gα(t) = log
[
(1 − wα) + wα exp

{√
2µt + σ − µ

}]
.

For large p this expression can be evaluated by a sad-
dle point integral, giving

log Z ≈ −pt$2/2 +
p∑
α

gα(t$) + O(log p) ,

where t$ maximizes the exponent in Eq.12. The con-
tribution to leading order of adding a new subgraph
with index α is thus

∆ log Z ≈ −t$2/2 + gα(t$) .

The change of t$ as a finite number of subgraphs is
added to or removed from the alignment alters the
result only by terms of order p−1. It thus turns out
to be sufficient to update the saddle-point value t$

for each link i, j once per Monte-Carlo sweep of the
algorithm.

In order to compute for each pair i, j in the
Viterbi approximation, the one-to-one mapping be-
tween nodes in each subgraph A is needed, going be-
yond the pairwise alignment. This mapping is also
needed to produce the plots of the consensus motifs
in Fig. 4. It is produced by minimizing the fuzziness
over the mapping between nodes in each subgraph,
again using Monte-Carlo dynamics (100 Monte-Carlo
sweeps while linearly increasing the inverse tempera-
ture from 0 to 10). The result of course depends on
the subgraphs in the alignment, and thus the map-
ping ought to be updated each time a subgraph is
added or removed from the alignment. In practice,
however, one update of the mapping between nodes
in each subgraph every 250 steps of the algorithm is
sufficient. The reason for this is again that the map-
ping between nodes in subgraphs in the alignment is
unchanged as motifs sufficiently close to the consen-
sus motif enter/leave the alignment.

Finally, we discuss a simple procedure for identi-
fying these structures from the set of subgraphs at
fixed (small) n. First, for a given subgraph of size n,
all neighbors with at least two links to the subgraph
are enumerated. In this way, non-treelike subgraphs
without dangling bonds with n + 1 nodes are gener-
ated. This procedure is repeated for the entire list
of p subgraphs. Several subgraphs of size n + 1 will
occur repeatedly in this list: the more subgraphs of
size n can be be generated from the larger n + 1 sub-
graph the more frequently it occurs on the list. Thus
ranking the n + 1 subgraphs according to the num-
ber of times they occur in the list, one obtains the
n + 1 subgraph from which the largest number of n



subgraphs derive. Clearly this procedure can be re-
peated iteratively, leading to subgraphs of increasing
size. In fact, Fig. 4 c is the result of applying this
scheme to the non-treelike subgraphs with n = 5. It-
erating twice, one finds two instances of the n = 7
layered structure of Fig. 4c.
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