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Structure and dynamics of molecular networks


  Structure:  Random parts?

                       Functional design?


  Evolution:  Pathways? 

                       Tempo?




1. Evolution of regulatory DNA




Genomic encoding of network interactions


  Multiple binding sites allow for complex regulation of individual genes in 
higher organisms:


    Input-output relation?

     Evolutionary dynamics?                                                            


[Bolouri and Davidson, 2002]




  Binding energy  E(a) can be obtained from  

      - low-throughput measurements [Fields et al. 97]

      - position weight matrix of functional sites [Berg and v.Hippel 86]

      - ChIP-chip data [Float et al. 05, Kinney et al. 06]

      - high-throughput measurements [Maerkl and Quake 07].


Biophysics of transcriptional regulation


     E(a) is the molecular phenotype of a site, 

      which quantifies its functionality. 


E(a)

a1      …     ak


  Transcription factor proteins bind to 
specific DNA sites catalyzing transcription.   


  E(a) depends on the site sequence  a = (a1,…,ak):        


+  nonlinear terms?




Cis-regulatory elements: from sequence to phenotype


     The binding energy E(a) is the molecular phenotype of a site, 

      which quantifies its functionality. 


     This phenotype predicts 

      binding intensity to promoters in yeast: 


ChIP-chip data for Abf1 binding in yeast

[Lee et al., Science 2002]


[Mustonen, Kinney, Callen, M.L., PNAS 2008]




[Berg, Willmann, M.L., BMC Evol. Biol. 2004, 
 Mustonen, M.L., PNAS 2005,  Mustonen, Kinney, Callen, M.L., PNAS 2008 ]


  Cis-regulatory elements:  from phenotype to fitness


    For broad-acting transcription factors, 

     high-affinity sites (E < Eb) are

     statistically overrepresented. 


Q


Eb
 E [kBT]


Abf1 binding sites in S. cerevisiae 


    At stationarity, the ensembles of functional   

    and background sites determine the 

    average fitness landscape F(E) of a site:  


  This predicts a 

  moderate fitness effect per functional site: 


Q(E)


P0(E)




Population genetics


  Selection: sequence state a has fitness


  Point mutations: 




   Genetic drift: 

      Kimura-Ohta substitution rates


Ratio of forward and backward rates:


a


b


Population genetics




  Evolutionary equilibria in sequence space:


 Given two  families of loci,

  -  background loci with stationary sequence distribution  P0(a) 

     under neutral evolution

  -  functional loci with stationary sequence distribution Q(a) 

     under selection 

     the fitness landscape  F(a)  for the functional loci is given by


     N: effective population size.  


[J.Berg, S. Willmann, M.L., BMC Evol. Biol. (2004)]

[V. Mustonen, M.L., Proc. Natl. Acad. Sci. (2005)]


Population genetics




Phenotypic evolution of binding sites 


E1


    The inferred fitness landscape quantitatively 

     predicts the evolution of the phenotype E:


Abf1 binding energy differences of sites in S. cerevisiae, S.paradoxus, S. mikatae, S. bayanus 


[Mustonen, Kinney, Callen, M.L., PNAS 2008]




Pathways of promoter evolution 


fitness


E


    Conservation of site and function


fitness


E


fitness


E


    Site turnover


+ conservation of function
 + turnover of function


   Time-dependent selection


             +  adaptation


fitness
 fitness




Conservation of binding sites 


    Sequences of conserved sites 

     evolve by compensatory mutations: 


  Hence, the energy phenotype is more 

  constrained than the site sequence:


E


S. cerevisiae

S. paradoxus 

S. mikatae 

S.  bayanus 


divergence time from cer  


 but


[Mustonen, Kinney, Callen, M.L., PNAS 2008]


[cf. Kellis et al.,
 Nature 2003]




Loss and gain of function


    Turnover of promoter function 

     determines loss and gain of regulatory 

     interactions:
 E


   Species-specific loss of sites:


Ebay


S. cerevisiae

S. paradoxus 

S. mikatae 

S.  bayanus 


 

  

    Functional turnover rate


                        γf ~ 0.1 µ     


cer
 par
 mik
 bay
 µt

[J. Kinney, V. Mustonen, C. Callan, M.L., PNAS 2008]




   Evolutionary systems biology 


    Natural selection acts on complex systems in a scale-dependent way:


synonymous
 substitutions


substitutions in
 binding sites


function turnover 


system level


selection strength
 2N ΔF 
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   Evolutionary systems biology 


fitness

1
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neutral evolution
 network turnover, 

differentiation, innovation


network kernels


lab experiments


network modeling

evolutionary genomics


    Laboratory experiments, modeling, and evolutionary genomics 

    address complementary aspects of biological systems:  




2. Evolution of the Drosophila genome




  Phenotypic concept of Darwinian selection:

      newly arising selection and response by adaptation. 


  Can we trace the time-dependence of selection 

      in genomic data?  


From fitness landscapes to seascapes




Genome evolution under constant and fluctuating selection


Fig. 1a


x(t)


time


   Allele frequency x(t) evolves under 

    selection,  mutations, stochastic fluctuations (genetic drift).


   Constant selection leads to evolutionary equilibrium, peq (x).


x(t)


time


   Fluctuating selection    

                            ΔF (t)  = f χ(t)  with  switching rate γ,


leads to adaptation: excess number of uphill mutations w/r to equilibrium.




Adaptation and fitness flux


   Substitutions and polymorphism spectra [Glinka et al 2003, Ometto et al 2005]

    are used to infer a surplus of beneficial over deleterious substitutions.


   Adaptation is quantified by a positive 

   fitness flux = (substititution rate) x 

                          (average selection coefficient of substitutions). 


[Mustonen and M.L, PNAS 2007]

f


γ




   What drives the waves?

external component:

time-dependent 

environment 


systems component:   
 correlations (epistasis) cause
 compensatory mutations.


genomic component:

linkage to other loci


Fitness seascapes


  Nonequilibrium + correlations:

   one external change can trigger an avalanche of responses.




 Conclusions

   Adaptive evolution should be viewed as a nonequilibrium phenomenon. 


   Adaptation can be quantified by the fitness flux in a population over a given 

    time interval.


  The biophysical binding energy is a quantitative molecular phenotype 

    for regulatory sequences in yeast.  


  Genomic sequence analysis can be used to infer  fitness landscapes 

    for this phenotype.        


  In Drosophila, fitness seascapes drive adaptive evolution.


  Review articles:

  From Biophysics to evolutionary genetics, M.L., BMC Bioinformatics 2007

  From fitness landscapes to seascapes: The dynamics of selection and adaptation,

  V. Mustonen and M.L., Trends in Genetics 2009


Conclusions



