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Structure and dynamics of molecular networks

Maternal inputs and some upstream zygotic responses
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‘ Skeletogenic structural genes

= Structure: Random parts?
Functional design?

= Evolution: Pathways?
Tempo?



1. Evolution of regulatory DNA



Genomic encoding of network interactions

= Multiple binding sites allow for complex regulation of individual genes in
higher organisms:
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» |nput-output relation?
Evolutionary dynamics?



Biophysics of transcriptional regulation

Transcription factor proteins bind to =

specific DNA sites catalyzing transcription.

Binding energy E(a) can be obtained from

- low-throughput measurements [Fields et al. 97]

- position weight matrix of functional sites [Berg and v.Hippel 86]
- ChlP-chip data [Float et al. 05, Kinney et al. 06]

- high-throughput measurements [Maerkl and Quake 07].

E(a) depends on the site sequence a = (a,...,a,):
k
E =

i

ei(ai) + nonlinear terms?
1

E(a) is the molecular phenotype of a site,
which quantifies its functionality.



Cis-regulatory elements: from sequence to phenotype

= The binding energy E(a) is the molecular phenotype of a site,
which quantifies its functionality.

= This phenotype predicts
binding intensity to promoters in yeast:
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ChlIP-chip data for Abf1 binding in yeast
[Lee et al., Science 2002]
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Cis-regulatory elements: from phenotype to fitness

For broad-acting transcription factors,
high-affinity sites (E <E,) are
statistically overrepresented.
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= At stationarity, the ensembles of functional 1.0 E
and background sites determine the e,
average fitness landscape F(E) of a site: ':’ . =
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moderate fitness effect per functional site: E

2N Fy ~ 10 Abf1 binding sites in S. cerevisiae

[Berg, Willmann, M.L., BMC Evol. Biol. 2004,
Mustonen, M.L., PNAS 2005, Mustonen, Kinney, Callen, M.L., PNAS 2008 ]



Population genetics

= Selection: sequence state a has fithess

F(a) = %( log N(a)>M:O — const.

= Point mutations:

a=(...a,..)—b=2(...b..)




Population genetics

Genetic drift:
Kimura-Ohta substitution rates

1—exp[—2(F(a)—F(b))]

Ya—b = Ha—b T exp[-2N(F(a)—F(b))]

Ratio of forward and backward rates:

Yamb — Ha=b exp[2N(F(b) — F(a))]




Population genetics

= Evolutionary equilibria in sequence space:

Given two families of loci,
- background loci with stationary sequence distribution Py(a)

under neutral evolution
- functional loci with stationary sequence distribution Q(a)

under selection
the fitness landscape for the functional loci is given by

Q(a) = Py(a) exp[2NF(a) + const.]

N: effective population size.

[J.Berg, S. Willmann, M.L., BMC Evol. Biol. (2004)]
[V. Mustonen, M.L., Proc. Natl. Acad. Sci. (2005)]




Phenotypic evolution of binding sites

= The inferred fitness landscape quantitatively
predicts the evolution of the phenotype E:
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Abf1 binding energy differences of sites in S. cerevisiae, S.paradoxus, S. mikatae, S. bayanus

[Mustonen, Kinney, Callen, M.L., PNAS 2008]



Pathways of promoter evolution

fit?ess
= Conservation of site and function ﬁ\\’
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Conservation of binding sites

= Sequences of conserved sites
evolve by compensatory mutations:

AE =) Aea  pyt var(AFE) < Z var(Ae; )

» Hence, the energy phenotype is more
constrained than the site sequence:

S. cerevisiae

8. paradoxus
| S. mikatae [cf. Kellis et al.,
Nature 2003]

S. bayanus

[Mustonen, Kinney, Callen, M.L., PNAS 2008]
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Loss and gain of function

|
= Turnover of promoter function 4 \\
determines loss and gain of regulatory . e
interactions: ' i
= Species-specific loss of sites:
N
S. cerevisiae =1
S. paradoxus Tz
S. mikatae 1::
S. bayanus e m el ma
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= Functional turnover rate
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[J. Kinney, V. Mustonen, C. Callan, M.L., PNAS 2008] m
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Evolutionary systems biology

Natural selection acts on complex systems in a scale-dependent way:

system level

A

function turnover

substitutions in N
binding sites

synonymous |
substitutions

! ! . . _ selection strength
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Evolutionary systems biology

Laboratory experiments, modeling, and evolutionary genomics
address complementary aspects of biological systems:

: : : : : : : —— fithess
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neutral evolution network turnover, network kernels
differentiation, innovation
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lab experiments
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network modeling
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evolutionary genomics



2. Evolution of the Drosophila genome



From fithess landscapes to seascapes

= Phenotypic concept of Darwinian selection:
newly arising selection and response by adaptation.

= Can we trace the time-dependence of selection
in genomic data?



Genome evolution under constant and fluctuating selection

= Allele frequency x(t) evolves under
selection, mutations, stochastic fluctuations (genetic drift).

= Constant selection leads to evolutionary equilibrium, p,, (x).

» Fluctuating selection
AF (t) =f x(t) with switching rate v,

leads to adaptation: excess number of uphill mutations w/r to equilibrium.



Adaptation and fitness flux

= Substitutions and polymorphism spectra [Glinka et al 2003, Ometto et al 2005]
are used to infer a surplus of beneficial over deleterious substitutions.

= Adaptation is quantified by a positive
fitness flux = (substititution rate) x
(average selection coefficient of substitutions).
d
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[Mustonen and M.L, PNAS 2007]



Fitness seascapes

= What drives the waves”?

systems component: gxternal component:
correlations (epistasis) cause  time-dependent
compensatory mutations. _environment /

genomic component:
linkage to other loci

I I
I I
* Nonequilibrium + correlations:

one external change can trigger an avalanche of responses.



Conclusions

= Adaptive evolution should be viewed as a nonequilibrium phenomenon.

» Adaptation can be quantified by the fitness flux in a population over a given
time interval.

» The biophysical binding energy is a quantitative molecular phenotype
for regulatory sequences in yeast.

» Genomic sequence analysis can be used to infer fithess landscapes
for this phenotype.

» In Drosophila, fithess seascapes drive adaptive evolution.

= Review articles:
From Biophysics to evolutionary genetics, M.L., BMC Bioinformatics 2007
From fitness landscapes to seascapes: The dynamics of selection and adaptation,
V. Mustonen and M.L., Trends in Genetics 2009



