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Darwinian evolution and adaptation

= Adaptative evolution of
phenotypes in a population
occurs due to
natural variation and
natural selection.

= Adaptive evolution is an
ongoing process, because
selection pressures keep
changing.




Determinants of molecular evolution

» Equation of motion for the population fractions (frequencies)
X = (X4, ...X,) Of phenotypes or genotypes in a population:

dx
o = sla)gle) + maz + n(z1) (@)
glx
selection mutations | reproductive fluctuations

(genetic drift)

= Equation of motion for the frequency distribution:
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Adaptative evolution

= Evolution in a fitness landscape
(S. Wright 1932) :

- interplay of selection and genetic drift
- longer time intervals: mutations
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[A. de Visser, SC. Park, J. Krug 09]
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Adaptative evolution

= Fundamental Theorem of Natural Selection
(R.A. Fisher 1930):

- deterministic evolution under time-independent
selection alone

d 2
CF(t) = s (1))

- evolution under time-dependent selection: nonequilibrium
d

5 0() = S (t). )

‘ fitness flux

» |s there an entropy principle of biological evolution?
(Schrédinger, What Is Life 1943)




Adaptive evolution

= A comprehensive theory of molecular evolution must include:

1. stochastic forces (mutations and genetic drift)

2. evolutionary histories, correlations between genomic changes:
distinguish compensatory evolution from adaptation:
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3. time-dependent selection:
nonequilibrium fithess seascapes

ithess Ia;ﬁé«aﬂ!s to seascapes:
n and adaptation

V. Mustonen, M.L., March 2009



1. Fithess flux theorem



Population histories and fitness flux

= A population history is a sequence of frequency measurements

X = (xo,...,:cn) at times (to,...,tn).

» The fitness flux of a population history is the
cumulative selective effect of frequency changes:

d(x) = 27—61 Az s(x;, t;).

* Flux in a fithess landscape: )
s(x) = VF(x)

= F(x,) — F(x).




Population histories and fitness flux

= A population history is a sequence of frequency measurements

X = (xo,...,:cn) at times (to,...,tn).

» The fitness flux of a population history is the
cumulative selective effect of frequency changes:

d(x) = 27—61 Az s(x;, t;).

= Flux in a fitness seascape: =
s(x,t) = VF(x,t)

1=1

7é F(CEn, tn) — F(CC(), to).




Evolutionary equilibrium and fithess

= |f the neutral process under mutations and genetic drift has an
equilibrium frequency distribution F(z), the process in an
arbitrary fitness landscape also has an equilibrium

Peg(z) = Py(a) M)

» Hence, fithess measures the information of population states:

Peq(x)

N(F)eq = /daz Poy(z) log By(2)

= H(Peq‘Po)_

KL entropy

[J.Berg, S.Willmann, M.L., BMC Evol. Biol. 2004,
V. Mustonen, M.L., PNAS 2010, in press]



Fitness flux and time reversal

= Each population history x has a
reverse history xT, in which all
frequency transitions have
opposite fithess effects:

» The probabilities of forward and reverse history are related:

P(XT) _ P(X) e—N(I)(x) +  AH(x)

‘fitness flux | entropy difference
of initial conditions

H(x,t) =log[P(x,t)/Py(z)]
AH(X) = H(xy, tn) — H(wo, o)

Hence, fitness flux measures the information of the evolution process:

N(®) = H(P|P") — H(P(ta)| ) + H(P(to)| )



Fitness flux theorem

» Theorem: For an evolutionary process with mutations, genetic drift
and selection given by an arbitrary fithess seascape,

<e—N<I>—|—AH> — 1.

(...): average over population histories,
AH(x) = H(xp, tn) — H(xo, to)

= Corollary: ® increases almost universally,

(@) > AH.

AH = (AH) = H(P(t,)|Po) — H(P(t)| o)
entropy difference between initial and final state.

[V. Mustonen, M.L., PNAS 2010, in press]




Modes of fithess evolution
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= Stationary nonequilibrium:
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* Demographic nonequilibrium: [ s T

(@) < 0 declining pop. size
(®) >0 recovery

N®&, —AH

= Strong-selection limit: Fundamental theorem of natural selection

d 2
(1) = (w(t), 1)



2. Evolution and entropy



Thermodynamics Biological evolution

= (-) energy = fithess
—FE(x,1) F(x,t)
» thermodynamic equilibrium = evolutionary equilibrium
Peg(x) = C'e™P00) Pag() = Py(a)eT)
» heat flux = fitness flux
1=1 1=1
= local entropy = local entropy
P(x,t)
S(Jﬁ,t)z—lOgP@?,t) HCE,t :]()g ’
» fluctuation theorem = fitness flux theorem
<e—6Q—A8> —1 <e—N<I>+AH> — 1
B3{Q) + AS = ASior > 0 N{®) — AH >0

[Seifert 05, cf. Jarzynski 97, Crook 99].



Thermodynamics Biological evolution




Thermodynamics Biological evolution

= Second Law = Adaptation can

decrease entropy!




Genomic information

» Transcription factors bind to DNA target sites.

sequence-specific binding
energy
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» Target sites have a more specific sequence than background DNA.

= Information gain (entropy loss)
in the adaptive formation of a new site (in bacteria or yeast):

AH = 15 bytes.
[Mustonen, M.L., PNAS 2005, Mustonen, Kinney, Callen, M.L., PNAS 2008 |

» Information content of the entire genome?



3. Irreversibility of evolution
(The length of time’s arrow)




Adaptation and fitness flux in flies

AAGTCAGTCGATCAGTTCTCGAATAAGTCAGTCCITCAGTTCTCGAAT
AAGTCAGTCGATCAGTTCTCGAATAAGTCAGTCCITCAGTTCTCGAAT
AAGTCAGTCEATCAGTTCTCGAATAAGTCAGTCCATCAGTTCTCGAAT rosophila

AAGTCAGTCGATCAGTTCTCGAATAAGTCAGTCCATCAGTTCTCGAAT
AAGTCAGTCCATCAGTTCTCGAATAAGTCAGTCCATCAGTTCTCGAAT  melanogaster

AAGTCAGTCCATCABTTCTCGAATAAGTCAGTCCATCAGHTCTCGAAT Drosophila [Glinka et al 2003,
simulans  Ometto et al 2005]

» Cross-species data and polymorphisms within species are used to
infer rate and average selection coefficient of substitutions.

= Adaptation is quantified by a positive fithess flux:
® = (rate) x (average selection coefficient of substitutions).

» This indicates a stationary nonequilibrium process:
- Selection coefficients at individual sites fluctuate
at nearly the rate of neutral substitutions.
- There is a surplus of beneficial over deleterious substitutions.

[Mustonen and M.L, PNAS 2007]

= Amount of genome-wide adaptation?



Conclusions

= Adaptive evolution is a stochastic nonequilibrium process
quantified by fitness flux .

» Drosophila genomes:
evidence for adaptive evolution driven by fithess seascapes.

" Fitness flux theorem:
Increase of ® is a nearly universal evolutionary principle.




