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1. Introduction
Processes: Variables change with time

◮ quasi-electron velocity in a conducting wire
◮ a car position in traffic
◮ a number of radioactive atoms in a substance
◮ a number of photons per unit time on a screen
◮ a stock index

We treat processes by appropriate mathematical tools.
In models of generated dynamics causality and time

homogeniety are build in from start.

Modeling by generated dynamics relies on knowledge about

◮ set of relevant variables
◮ reversibility/irreversibility of motions
◮ stability of properties
◮ short and/or long time behavior
◮ role of fluctuations
◮ role of memory



Aim of the course

Overview and training to model systems with
prognostic power in relevant variables.
We focus on the aspect of "equation of motion" and
not so much on the aspect "theory of matter".
We use a systematic approach to equations of
motion by generated dynamics to capture and
better understand the antipodes

◮ reversible – irreversible

◮ deterministic – stochastic

◮ microscopic – macroscopic

◮ discrete - continuous



We go beyond quantum theory, which is "just" a theory of
reversible stochastic processes.

◮ The general time reversible, deterministic, generated dynamics
of discrete facts is a permutation dynamics. We argue that
it is the deterministic representation of quantum

processes which - like other processes - emerge from
permutation dynamics by laws of large numbers in the sense
of Phil Anderson’s “More is different”. This approach is -
apart from different wording and reasoning- already known as
the cellular automaton interpretation of quantum

mechanics by Gerard ’t Hooft.

◮ Open systems have few relevant system variables in contact
with a huge number of irrelevant (environmental) variables.
They show irreversible stochastic behavior with a

memory.



Reversible Processes
Reversibility of relevant variables in idealized closed isolated
systems

Figure: Energy Conservation

A reversed movie is not funny.



Instability of Reversibility
Reversibility is unstable against "environmental contact".

A huge number of variables of my body (external) and within the
sheet of paper (internal) influence in an uncontrolled manner the
two "relevant" variables of the manifold describing the sheet of
paper. The huge number of uncontrolled variables, external and
internal, are denoted as "environment".

Figure: Real Live



Relaxation to Stationarity

Irreversibility leads to stationary states

Equilibrium Close to Equilibrium
Far from Equilibrium

system

No global Current J
Maximum Entropy S

environment

system

Strong Current J
dSsys = dSext + dSint

Emergence of New 
Structures possible

system

Current J, Force F
dS/dt = F·J

Figure: Equilibrium and Non-Equilibrium



Fluctuations - Reversible
Distinguishing between typical behavior and fluctuations we need a
stochastic process description: quantum means reversible

Figure: Qualitative sketch of the fluctuating field amplitude of a coherent
laser light source



Fluctuations - Irreversible
Markov processes describe irreversible fluctuations

Figure: In the long time average of a signal its stationary value emerges



Discrete vs. Continuous
Facts: a discrete number of properties being the case at discrete instants of time.

More details take more variables into account.
We usually stop at some point:
(a) We cannot resolve more details.
(b)The resolution destroys our ability to focus on "relevant
variables" for the investigation

Figure: Wood of Trees



Discrete vs. Continuous

To (a): Nowadays Planck time (5 · 10−44 s) and Planck length
(2 · 10−35 m) set limits of resolution because we have no
understanding how matter behaves on smaller scales. There are
intermediate levels of stability like grains, molecules, atoms,
quarks. It may stop at some level or may go on.
To (b): Resolution of characteristics of processes sets the limit in
choosing variables as relevant.

◮ We could always choose discrete variables and discrete time
steps with appropriate resolution for a process at hand.

◮ When a smooth average drift with perhaps some fluctuations
occurs we often use continuous variables and/or continuous
time in order to have the powerful mathematics of calculus for
analytic functions.

◮ Continuity is an appropriate view on nature when properties
emerge that vary in small steps. Small step behavior helps in
identifying relevant properties.



Micro vs. Macro

◮ When a distinction between relevant and irrelevant variables is
appropriate with an effective dynamics for relevant variables
we have a macroscopic description of a process.

◮ As long as we do not consider such effective dynamics we
have a microscopic description.

◮ Sometimes we can identify more details and a formerly known
microscopic description turns out to be macroscopic in view of
the more detailed description with more variables.

◮ Separating microscopic from macroscopic has often to do with
a limit of large numbers of irrelevant variables in comparison
to the number of relevant variables, because with more details
within higher resolution the total number of variables increase.

◮ Thermodynamics of a gas of atoms like He based on
statistical physics is a good example for separating
macroscopic from microscopic descriptions.



Examples of well known generated dynamics

   Characterizing Processes

Reversible with Fluctuations

Example: photons, atoms 

Name: quantum process

Equation: Schrödinger/von Neumann
 equation

(1926-27)

Irreversible with Fluctuations

Example: car in traffic, Brownian motion 

Name: Markov process

Equation: master equation

(1900 - 1931)

Reversible without Fluctuations

Example: ~planets, ~pendulum 

Name: Hamilton process 
Equation: canonical equations

(1687 - 1847)

Irreversible without Fluctuations

Example: skydiving, average population, 
running couplings 

Name: „Aristotelian“ process
Equation: „Aristoteles“ equation

                   
                         (since „-330“ )

ρ̇=−i [H ,ρ] Ṗ=M P

Ẋ={H , X } ẋ=v (x)



Prerequisites for this course

◮ basic linear algebra and calculus ~x(t) = ~x0e
−2t; ~̇x(t) = −2~x(t)

◮ basic knowledge about Hamiltonian equations, Maxwell’s
equations ẋ = ∂pH(x, p) = {H,x} ;

∂t ~E(~x, t) = rot ~B(~x, t) −~j(~x, t)

◮ basic knowledge of operators, states and expectation values in
quantum theory ψ̇ = −iHψ; ψt = e−iHtψ0; Ȧ = i [H,A];
〈A〉 = 〈ψ | A | ψ〉; 〈A〉 = Tr {PψA} with projector
Pψ = | ψ〉 〈ψ |

◮ basic knowledge of probability theory
PGauss(x) = (2πσ2)−1/2 exp −(x− x0)2/(2σ2)

◮ basic knowledge of equilibrium statistical physics

〈A〉 = Tr {ρA}; ρ = e−H/T

Tr e−H/T

◮ basic knowledge of Fourier and Laplace transform
f(z) :=

∫

∞

0 dt eiztf(t) = i
z−ωf0 for f(t) = f0e

−iωt



Modeling Systems: I. Variables

Physical system are defined by a set of relevant variables x
forming the configuration manifold.
Tangential vectors v serve as short time deviations.
∂x is the generator of translations for any (analytic) function f(x):

f(x+ a) = ea∂xf(x) =
∑

n

an

n!
∂nxf(x) (1)

Variable x is short hand for many alternative cases: discrete,
multicomponent discrete or even multicomponent continuous,
xk(~s). Products as x · J are always meant as sums or integrals of
products

∑

k

∫

dns xk(~s)Jk(~s). In usual nomenclature "external
indices” denoted as ~x, while the "internal indices” are discrete.

xk(~s) −→ ϕk(~x) (2)

Such variables ϕk(~x) are then called a field.



Modeling systems: II. Properties

Properties of a physical system are functions on the

configuration tangent bundle

f(x, v) (3)

or functions on the cotangent bundle

f(x, p) . (4)

The tangent bundle contains (x, v) data and the cotangent bundle
(x, p) data where a cotangent vector p is from the dual space
(containing linear forms on the tangent vector space).



Modeling Systems: III. Random Variables

Random variables are the coordinates x of a random event.
We assume to know how to decide if an event has taken place and
has become a fact. The registration of a fact is what we call a
measurement, or in short a trial.
An improvable theory tells which documents are to be accepted to
decide about facts.
Performing measurements under controlled conditions that could
be met again later within some accepted range of validity is what
we call an experiment.



Modeling Systems: IV Probability
Probability Pj ≥ 0 of potential events in class Qj is a
prognostication for the relative frequencies hj to be found when
potential events have become facts. For a single experiment the
outcome of hj can be 1 or 0.
If measurements are done under “similar conditions”, each time
with probability Pj , one should find

lim
N→∞

hj = Pj + O(N−1/2)Pj . (5)

For continuous random variables a probability distribution, with
P (~x) ≥ 0, yields expectation values for properties A(x)

〈A〉 :=

∫

dfxP (~x)A(~x) . (6)

It is linear in A and must fulfill the normalization

〈1〉 =

∫

dfxP (~x) = 1 . (7)



Modeling Systems: V Probability Flux and Continuity

For continuous t and x a continuity equation with probability

flux (probability current density) jt(x) must be fulfilled,

∂tPt(x) = −∂xjt(x) . (8)

In discrete time steps δt and with discrete variables n the
probability conservation is Kirchhoff’s knot rule

Pt+δt(n) − Pt(n) = [Igain(n) − Iloss(n)] δt , (9)

Keep in mind (8),(9) cannot serve as equation of motion but as
constraints on any equation of motion.



Example: Diffusion Equation

An equation of motion can result as soon as the flux j is specified
as a functional of P .
In a phenomenological theory about ink in water the flux is
proportional to the gradient of the density of ink particles but
points in opposite direction (Fick’s law).
It reflects to linear order in the gradient the observation of ink
particle flow from regions of higher densities to regions of lower
densities.
One has

j(x) = −D∂xP (x) (10)

with the so-called diffusion constant D.
The resulting Master equation is a Fokker-Planck equation with
diffusion only and is known as the diffusion equation or heat
equation,

∂tPt(x) = D∂2
xPt(x) . (11)



Example: Diffusion Equation

The solution to an initial value of delta-peaked1 ink at x = x0 is
an irreversible Gaussian distribution with variance increasing linear
in time,

Pt(x) =
1√

4πDt
exp

(

−(x− x0)2

4Dt

)

. (12)

A variance increasing linear with time, (δx)2 = 2Dt, is the
signature of diffusive motion.

1so-called fundamental solution or Green’s function of the linear differential

equation



Exercise No. 1

1. Find examples for stochastic processes with fluctuations. Are they
reversible or irreversible? How do you judge?

2. Where to put the classical Euler equations for rigid bodies in the
overview of processes? Where to put Maxwell’s equations? Where
to put Quantum electrodynamics? Where to put General Relativity?

3. Solve the equation of motion v̇ = −v/τ with positive τ for an initial
value v0. Find the stationary solution.

4. Why can ẋ = g(x) not describe a reversible process?

5. Show that the diffusion equation follows from Fick’s law and the
continuity equation. Show that the fundamental solution solves the
corresponding initial value problem.

6. For every probability flux jt(x) being in balance with Pt(x) we can
define a velocity field vt(x) by

vt(x) := jt(x)/Pt(x) .

Show that the time derivative of the average value of coordinate x
equals the average of the velocity field with respect to Pt(x). Start
by formulating the equation to show.
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I.1 Semi-Group and Group
We consider generated semi-group or group dynamics because
they reflect causality and time homogeneity.

Tt3−t2
· Tt2−t1

= Tt3−t1
(1)

with T0 = 1 . For continuous time t, the generator G is the
derivative at t = 0,

G = ∂tTt |t=0 , (2)

The full time evolution operator is

Tt = et·G . (3)

For discrete time t, the generator G is the logarithm of the
one-step time evolution and can be expressed as

G = log (T1) =
∞
∑

n=1

(T1 − 1)n

n
, (4)

Time evolution is step by step and solving for short times allows to
calculate for long times.



Inverse or Not Inverse

◮ In semi-groups not every element has an inverse within the
semi-group. This is to be expected for effective dynamics of
relevant variables when irrelevant variables cannot be followed
in detail.

◮ With group dynamics the principle of sufficient reason is
implemented. This is to be expected only when the time
evolution of every variable can be followed in every detail.

◮ We call a system reversible, if for each transformation Tt−t0

an inverse transformation T−1
t−t0

exists, which also describes a
possible time evolution of the system, otherwise irreversible.

◮ Reversible systems have a time evolution with group
dynamics while irreversible systems have a time evolution
with semi-group dynamics .



I.2 The Choice of State as Initial Condition

The defining feature of a state is that it can serve as an initial
condition of the (semi-)group dynamics. The time evolution
operator operates on states,

σt = Ttσ0 = etGσ0 . (5)

In continuous time we have a differential equation of motion

σ̇t = Gσt , (6)

which is the most popular version of the equation of motion in
generated dynamics. In discrete time we have instead to the
differential equation an iterative equation of motion

σt+1 = T1σt . (7)

As we will see, a state can consist of properties or of a
probability or of a pre-probability or of fact-states.



I.3 The resolvent version of the equation of motion
The generated dynamics by (semi-)groups is characterized by (5).
This amounts to calculate an exponential of a generator and
typically cannot be done unless a spectral representation of the
generator is known. A step forward prior to a full spectral
representation is achieved by the Laplace transformed version of
(5) and introduces the resolvent (z − L)−1 associated to the
generator, where z is a complex number.

σ(z) = i [z − L]−1 σ0 , (8)

where L := iG is called the Liouville of the dynamics.
Instead of an infinite exponential series expansion we only have to
calculate the inverse of (z − iG). In addition, the spectrum of L
shows up in singular behavior of the resolvent when z comes close
to a spectral value 1 of L. Such form is widely exploited in signal
processing, electrical engineering as well as in condensed matter
and high energy physics.

1generalization of the notion of eigenvalue for matrices



I.3 On Spectral Theory for Operators

for reference see:

◮ Thirring: Quantum Mathematical Physics, Springer, 2013

◮ Markin: Elementary Operator Theory, de Gruyter, 2020

We consider linear operators like L acting on some linear space
X , equipped with a norm ("length") or a scalar product ("length
and angel"). When the dimensionality is not finite, topological
considerations are essential and we consider linear spaces where
every Cauchy series has a limit within X (completeness). Such
spaces are called Banach space (with a norm) or Hilbert spaces
(with a scalar product). The set spec(L) where the z − L is not
bijective is called spectrum of the resolvent.



There are three disjoint subsets within the spectrum:

◮ The point spectrum: Here the resolvent does not exist.

◮ The continuous spectrum: Here the resolvent exists,
surjectivity of z − L fails by missing closing points.

◮ The residual spectrum: Here the resolvent exists, the closure
of the image of z − L does not give full X.

◮ Operators with only point spectrum are very similar to finite
matrices and we may treat the points like eigenvalues (e.g.
the harmonic oscillator Hamiltonian of quantum mechanics).

◮ The continuous spectrum corresponds to quasi-eigenvalues
and non-normalizable eigenstates (e.g. plane waves or
scattering states in quantum mechanics) in non-finite
dimensional spaces. One can catch them in a N -dimensional
discretization by studying the scaling of eigenstates and
eigenvalues with dimension N .

◮ The residual spectrum can occur for non-surjective isometric
operators like the right-shift operator
RS(x1, x2, x3, . . . ) = (0, x1, x2, x3, . . . ).



II.1 Continuous Aristotelian: Semi-Group

When the state is just the configuration (we call it Aristotelian
processes), σ = x, the generator looks like

G = Ar = v(x)∂x (9)

with some function v(x), and by ẋ = Gx and ∂xx = 1 we arrive at

ẋ = v(x) (10)

and more generally to an equation of motion for any property
σ = f(x),

ḟ(x) = f ′(x) · v(x) . (11)

Such dynamics cannot be reversible, since at a given value of x
there is only one value of ẋ and the motion cannot be turned back.



II.2 Continuous Newton: (Mostly) Group

Reversible dynamics is possible with states taken from the
tangent bundle σ = (x, v = ẋ). The historic invention of Newton
corresponds to the following generator

G = N = ẋ∂x + a(x)∂ẋ (12)

with some function a(x) describing the acceleration as
ẍ = v̇(x) = a(x). Since the acceleration is of second order in time
derivatives, at a given point, the velocity can be reversed and the
motion can be turned back. The general equation of motion of
Newton processes then reads for states σ = f(x, ẋ)

ḟ(x, ẋ) = ∂xf(x, ẋ) · ẋ+ ∂ẋf(x, ẋ) · a(x) . (13)

Remark: If a = a(x, v, t) irreversible friction and environmental
coupling can be described, too. The dependence on v breaks
reversibility ("friction") and the dependence on t breaks time
homogeneity, two features expected for environmental coupling.



II.2 Continuous Hamilton: Group

States taken from cotangential bundle σ = (x, p) (phase space)
allows further structure: the invariance of the volume element
dx ∧ dp (Liouville’s theorem) under time evolution for proper
counting of states in statistics. The processes are called Hamilton
processes, where the generator has the form of Poisson’s bracket

G = {H(x, p), ·} := (∂pH(x, p))∂x · −(∂xH(x, p))∂p· , (14)

with Hamilton function H(x, p). The general equation of motion
then reads for σ = f(x, p)

ḟ(x, p) = ∂xf(x, p) · ∂pH(x, p) − ∂pf(x, p) · ∂xH(x, p) . (15)

Interpreted as a property of the system conserved H is called
energy. In many cases, since p and ẋ are related, Newton and
Hamilton lead to the same second order differential equation for x.
By Legendre transformation an equivalent Lagrange formulation is
possible.



II.3 Discrete: (Semi-) Group

A consequent discretization of configurations and time steps leads
to an astonishing far reaching observation under the restriction of
time homogeneous (semi-)group conditions:
There are only two different types of dynamics:

◮ (A) Periodic with all configurations involved (including
stationarity as period T = 0).

◮ (B) Relaxing to stationarity in time τ .

◮ (B’) Relaxing to periodicity with period T on reduced
configurations in time τ .

In case (A) we have a dynamics by the one-step generator taken
from the group of permutations.
As we will come back to this as a deterministic representation of
quantum theory we will elucidate this observation in more detail
now.



II.3 Discrete: - two value system
In system with N values of its configuration space,
x ∈ {1, 2, . . . , N}, a time homogeneous evolution in discrete
steps by (semi-)group dynamics is fixed by one-time-step.
In case N = 2 we have only N2 = 4 possibilities for the next step
for each value: 1 → 1, 1 → 2, 2 → 1, 2 → 2 leading to NN = 4

possible time evolutions, starting from an initial setting

(

1
2

)

(

1
2

)

→
(

1
2

)

→
(

1
2

)

. . . (16)

(

1
2

)

→
(

2
1

)

→
(

1
2

)

. . . (17)

(

1
2

)

→
(

1
1

)

→
(

1
1

)

. . . (18)

(

1
2

)

→
(

2
2

)

→
(

2
2

)

. . . . (19)



II.3 Discrete: - two value system

◮ Equations (16) and (17) show periodic dynamics, (16) with
period T = 0 and (17) with period T = 2, and

◮ (17) and (18) show relaxation to a stationary state in one
time step, τ = 1.

◮ In the relaxation situation the one-step mapping is not
invertible, since two values are mapped to the same value.



II.3 Discrete: N = 3 value system

In case N = 3 we have only N2 = 9 possibilities for the next step
for each value: 1 → 1, 1 → 2, . . ., 3 → 3 leading to NN = 27
possible time evolutions, starting from an initial setting 123 :
after step 1 after step 2 after step 3 type

111 111 111 B τ = 1

112 111 111 B τ = 2

113 113 113 B τ = 1

121 121 121 B τ = 1

122 122 122 B τ = 1

123 123 123 A T = 0

131 111 111 B τ = 2

132 123 132 A T = 2

133 133 133 B τ = 1

211 122 211 B’ τ = 1, T = 2

212 121 212 B’ τ = 1, T = 2

213 123 213 A T = 2

221 222 222 B τ = 2



II.3 Discrete: N = 3 value system

continued table
after step 1 after step 2 after step 3 type

222 222 222 B τ = 1

223 223 223 B τ = 1

231 312 123 A T = 3

232 323 232 B τ = 1

233 122 122 B’ τ = 1, T = 2

311 133 311 B’ τ = 1, T = 2

312 231 123 A T = 3

313 333 333 B τ = 2

321 123 321 A T = 2

322 222 222 B τ = 2

323 323 323 B τ = 1

331 113 331 B’ τ = 1, T = 2

332 223 332 B’ τ = 1, T = 2

333 333 333 B τ = 1



II.3 Discrete: - N value system

From N = 3 we learn:

◮ There are N ! of NN cases (A) with periodic dynamic involving
all N variables. The corresponding one-time-steps are just the
N ! invertible permutations of the permutation group SN .

◮ There are cases (B’) of relaxing dynamics to periodic motion,
reduced to the configuration space of N − 1 or less values.
The corresponding one-time-steps generate semi-groups on
the N original values. The corresponding mappings are not
invertible on all original values.

◮ All other cases (B) correspond to relaxation to stationarity
within some relaxation time τ < N .



II.3 Discrete: Reversible permutation dynamics on facts
The reversible permutation dynamics is a group dynamics,
generated by a one-step time evolution operator T [π] corresponding
to a permutation π ∈ SN . It can be represented as a matrix acting
on states which are indicator vectors. We like to call them fact
states or just facts. Indicator vectors indicate which of N
possible exclusive values is a fact. For example, let the 3rd
value in a 4−value system be a fact, then the corresponding fact
reads as an indicator vector:

φ[3] =











0
0
1
0











. (20)

The permutation π : 1234 → 2413 is represented by

T [π] =











0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0











. (21)



II.3 Discrete: Reversible permutation dynamics on facts
You may check that T [π]φ[k] = φ[π(k)]. In general, one-step
evolution operators corresponding to permutations have in each
row and in each column exactly one non-vanishing entry of 1.
Thus, the sum of each column is 1 and the sum of each row is 1.
Thus, these matrices are not only stochastic, but also
double-stochastic. They are also orthogonal and also unitary.
The matrix representation can be written for arbitrary N as

T
[π]
lm = δlπ(m) ;

(

T [π]
)−1

= T [π]† ; T [π]†
lm = δmπ(l) . (22)

Facts can be written as

φ
[k]
m = δmk (23)

such that it generates a permutation dynamics by π:

T [π]φ[k] = φ[π(k)] . (24)



III.1 Chapman-Kolmogorov and Master Equations
For Markov processes, the defining feature is that the probability
distribution serves as the state of the time evolution, σ = P . The
corresponding equation of motion is called Master equation

∂tPt = MPt , (25)

where G = M is a linear operator represented as an integral kernel
M(x′, x) or matrix. The semi-group property of the time evolution
operator T = eMt (stochastic matrix) reads in kernel notation as
so-called Chapman-Kolmogorov equation

Tt2−t0
(x′, x) =

∫

dx′′ Tt2−t1
(x′, x′′)Tt1−t0

(x′′, x) (26)

Probability conservation requires
∫

dx′ T (x′, x) = 1 , (27)
∫

dx′M(x′, x) = 0 . (28)

Inversion -if it works at all - does, in most cases, lead out of the
stochastic matrices which must have non-negative elements.



Recall diffusion

The M -Operator can - under conditions to be discussed later -
very often be approximated by linear differential operators with
coefficient functions called drift and diffusion. The corresponding
linear partial differential equation of second order in ∂x is denoted
as Fokker-Planck equation. It can be encoded in a stochastic
differential equation called Langevin equation. The diffusion
equation

∂tPt(x) = D∂2
xPt(x) (29)

is a special case with

M(x, x′) = D∂2
xδ(x− x′) . (30)



III.2 Markov: Two Value System
The Master equation in continuous time

Ṗt(+) = w+−Pt(−) − w−+Pt(+) , (31)

Ṗt(−) = w−+Pt(+) − w+−Pt(−) . (32)

Since Pt(+) = 1 − Pt(−)

Ṗt(+) = w+− − (w+− + w−+)Pt(+) , (33)

The solution

Pt(+) =
w+−

w+− + w−+

[

1 − e−(w+−+w−+)t
]

+ P0(+)e−(w+−+w−+)t .

(34)
relaxes to the stationary state independent of initial condition

P∞(+) =
w+−

w+− + w−+
, (35)

with relaxation time (w+− + w−+)−1. For symmetric
w+− = w−+ = w P∞ = 0.5 and the relaxation time is 1/(2w).



IV.1 Unitarity and Born’s principle
Pre-probabilities are complex functions and their space (Hilbert
space) is equipped with a scalar product, 〈φ|ψ〉 :=

∫

dxφ∗(x)ψ(x)
such that |ψ(x)|2 can serve as a probability distribution. This is
Born’s principle in quantum theory.

Pt(x) = | 〈x | ψt〉 |2 , (36)

ψt = Utψ0 = e−iHtψ0 , (37)

∂tψt = −iHψt . (38)

(38) is called general Schrödinger equation. It fits in our
scheme of generated dynamics with σ = ψ and Tt = Ut and
L = H. Here, by construction, the probability is conserved and
time reversibility is guaranteed by

U−1
t = U−t = U †

t . (39)

Probability density Pt(x) and probability flux jt(x) are
independent quantities following from the pre-probability ψt(x),
which thus serves as the state of quantum processes, which are
reversible stochastic processes.



IV.2 Quantum: Two Value System

With the help of the eigenstates Cxm := 〈x | m〉 the time
evolution reads

ψt(x) =
∑

m

Cxme
−iωmt 〈m | ψ0〉 , (40)

〈m | ψ0〉 =
∑

x′

C∗
x′mψ0(x′) . (41)

For two values x = +,− and m = 1, 2 the diagonal elements of H
are real numbers H++ and H−−. The off-diagonal elements are
complex conjugated H−+ = H⋆

+−. The frequencies are

ω1,2 =
H++ +H−−

2
±
√

(H++ −H−−)2

4
+ | H+− |2 , (42)



and the eigenstates are

C+1 =
−H+−

√

(ω1 −H++)2+ | H+− |2
, (43)

C+2 = C+1 · ω1 −H++

H+−
, (44)

C−2 =
−H−+

√

(ω2 −H−−)2+ | H+− |2
, (45)

C−1 = C−2 · ω2 −H−−

H−+
. (46)

Choosing the initial state as ψ0 = + one finds so-called Rabbi
oscillations in the probability of a two value quantum system
(frequently called two level system),

Pt(+) = 1 − 4 | C+1 |2 ·(1− | C+1 |2) · sin2
(

(ω1 − ω2)t

2

)

. (47)

For degenerate states ω1 = ω2, of course, there are no oscillations.
Starting with an eigenstate, of course, the probability stays 1.
Oscillations rather than relaxation is the indicator of reversible
stochastic processes.



IV.3 Free Particle vs. Diffusion

Free particle means translation invariance and rotational (in 1D
reflection) invariance . Thus H = H(∂2

x) and does not explicitly
depend on x. Once we require Galilei invariance (velocities add) we
find H = (−1/2m)∂2

x with positive parameter m characterizing
inertia. The corresponding Schrödinger equation reads

∂tψt(x) =
i

2m
∂2

xψt(x) . (48)

It looks like a diffusion equation when we identify D with i/2m.
The fundamental solution (Green’s function) can be found by
Fourier analysis as for the diffusion equation:

G(x, x0, t) =

√

m

2πit
exp

(

−mx2

2it

)

. (49)



Free Particle vs. Diffusion: Flux, Spreading, Drift,
Interference

◮ The flux is related to the phase gradient of the pre-probability
ψ =

√
Peiϕ,

jt(x) = Pt(x)
∂xϕ

m
. (50)

◮ The width of a quantum wave packet grows linearly in time
while the peak moves with a velocity. The diffusive wave
packet has no drift at all and its width grows only as a square
root in time.

◮ When quantum wave packets meet they interfere
(superposition of amplitudes) while diffusive packets just
superimpose probabilities.
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Overview on Methods
The time-dependent (semi-) group time evolution operator

Tt = etG = T t
1 (1)

or its corresponding complex frequency dependent resolvent

(z − iG)−1 (2)

are operator valued functions of G or T1, not easy to evaluate.

◮ In discrete time, one can proceed by iteration
Tt = Tt−1T1 = T t

1.
◮ For discrete variables a spectral decomposition of T1 or G

essentially solves the dynamics. We sketch this here and come
back to it when discussing open systems.

◮ Symmetries can help to reduce complexity of calculations. We
will touch it later.

◮ If G = G0 +G1 with solved G0 problem, one can make
expansion in G1. This time dependent perturbation theory
can be found in standard lectures on quantum theory and it
will not be treated here.



Overview on Methods

◮ When the variables can be treated as continuous, the use of
the translation operator ∂x transforms the generator to a

differential operator. This helps in truncated Lie series

expansions, useful for deterministic processes.

◮ The spectral decomposition of ∂x allows for a path integral

representation of the time evolution operator for
stochastic processes, both of Markov and quantum type. This
opens a great flexibility for further approximations which go
beyond standard perturbation theory.

◮ There is also a supersymmetric path integral representation
for the resolvent operator which seems - to me - promising to
study. However, due to lack of time and expertise it will not
be addressed further in this lecture course.



I. Spectral decomposition of Liouville

σ as probabilities or pre-probabilities or facts we represent as
elements taken from a Hilbert space X to have expectation values
by weighted superpositions. With fact states the weights are
exclusively 0 and 1. The Liouville L = iG = i log T1 acts as
operator on X . Quite generally we may write

L = H − iΓ ; with H† = H ; Γ† = Γ ≥ 0 . (3)

Γ ≥ 0 excludes unbounded exponentially large growing of
properties. We assume X to have finite dimension N (from
beginning or by discretization) and L should not have any further
symmetries such that its eigenvalues λk = ωk − iγk (ω, γ real and
γ ≥ 0) can be assumed to be non-degenerate. We can then
[Dieudonné: On biorthogonal systems, Michigan Math. J. 2 (1953);

Brody: Biorthogonal Quantum Mechanics arXiv:1308.2609] find a
bi-orthogonal partition of unity by normalized left and right
eigenstates 〈Lk | , | Rk〉, which means ...



....

〈Lk|Rk′〉 = δkk′ ;
N
∑

k=1

| Rk〉 〈Lk | = 1 . (4)

Left and right eigenstates have to be distinguished. Left and right
eigenstates are generally not orthogonal amongst themselves.
Hermitian conjugates of left and right eigenstates are eigenstates
of L† with complex conjugated eigenvalues λ∗

k. Left and right
eigenstates become identical with real eigenvalues when Γ vanishes
and L is Hermitian, as in quantum processes.
Now we can write the spectral decomposition of L as

L =
N
∑

k=0

λk | Rk〉 〈Lk | . (5)

An evolving state is a superposition of oscillations (λk real finite),
relaxations (λk imaginary finite), damped oscillations (λk

complex finite), or a stationary state (zero-mode: λk=0):

| σt〉 =
∑N

k=0Ake
−iωkt−γkt | Rk〉 ; Ak = 〈Lk|σ0〉 . (6)



Remarks on (6):

◮ In case of accidental degeneracies there will appear additional
terms of type tne−iωkt−γkt with n+ 1 limited by the
dimensionality of the eigenspace.

◮ When the discretized system becomes larger and the spectrum
becomes denser with increasing N and when it cannot be
resolved any longer, the sums should be replaced by
appropriate integrals and the time behavior can become much
more involved than described by (6). However, it can be
traced back to (6) in a controlled way by studying the
behavior under increasing discretization number N .



II.1 Generator Coefficients
Kernels like G(x, x′) in σ̇t(x) =

∫

dx′G(x, x′)σt(x
′) can be

represented by a series of local differential operators of arbitrary
high order, because ∂x is the generator of translations:

∫

dx′ f(x, x′) =

∫

dh f(x, x+h) =
∞
∑

n=0

(∂x)n

∫

dh
hn

n!
f(x−h, x) .

(7)
G operating on functions of variable x can be expressed as

Gx· =
∞
∑

n=0

(∂x)n [Gn(x)·] , (8)

with generator coefficients uniquely determined by

Gn(x) =
(−1)n

n!

∫

dx′ (x′ − x)nG(x′, x) . (9)

G(x′, x) can then be expressed as

G(x′, x) =
∞
∑

n=0

[

(∂x′)nδ(x′ − x)
]

·Gn(x) . (10)



II.2 Kramers-Moyal coefficients

In the Markov case the generator coefficients are known as
Kramers-Moyal coefficients which can, due to the transition rate
character of M(x, x′) =: w(x′ → x) for x 6= x′, be written in
terms of moments of deviations ∆x := x′ − x

Dn(x) := lim
∆t→0

(−1)n

n!
〈(∆x)n〉w /∆t . (11)

In particular, D0(x) = 0 due to probability conservation, D1(x) is
denoted as drift coefficient and D2(x) as diffusion coefficient.
The Markov equation for systems with only drift and diffusion is
called Fokker-Planck equation (FPE). For continous Markov
processes FPE is very often a reasonable approximation, provided
enough randomness happens already on time scales shorter than
the resolution time scale (a "large N phenomenon").



Comment on Langevin Equation

The Fokker-Planck equation for the probability distribution can be
written as a so-called Langevin equation (a stochastic differential
equation) for the time dependent stochastic variable x(t) which
simply rests on the role of the two coefficients, drift and diffusion,

lim
∆t→0

〈∆x〉 /∆t = −D1(x) (12)

lim
∆t→0

〈

(∆x)2
〉

/∆t = 2D2(x) (13)

The second equation shows the fractal non-differentiable character
of paths x(t). Without diffusion there is only drift - back to the
deterministic situation ẋ = −D1(x).



II.3 Hamilton coefficients

In the quantum case with Dirac Notation H(x′, x) = 〈x′|H|x〉

Hn(x) =
(−1)n

n!

∫

dx′ (x′ − x)n
〈

x′|H|x
〉

. (14)

are called Hamilton coefficients There is no restriction on these
coefficients apart from Hermiticity of H which not only means on
average over x, but due to the local character: even coefficients

are real and odd coefficients are imaginary.

H0(x) is called potential field, −iH1(x) is called gauge field,
since it can be regauged in combination with a regauge of the
wave function’s phase and constant H2 = −1/2m, with m called
mass, ensures real flux. A well known form of a Hamilton operator
for up to second order coefficients reads

H = (−1/2m) (∂x + iqA(x))2 + V (x) (15)



III.1 Lie Series

The formal series solution of etG (Lie series)

f(t) =
∞
∑

m=0

tm

m!

(

∞
∑

n=0

(∂x)n [Gn(x)]

)m

f(0) . (16)

is defined by pure differentiation and thus can be carried out to
arbitrary high order by (computer-) algebra. In some special cases
the summation can be done completely and in all other cases it
can be used as a quite effective tool for approximations; mainly for
deterministic dynamics with only G = g(x)∂x.The idea is: take
short time steps and truncate after low powers and control of
errors (compare the run with maximum power n and n+ 1).
As an example with a complete analytical solution we consider the
Aristotelian model for motion on earth: G = −kx∂x. The Lie
series applied to an initial x yields
x(1 + (−k)t+ (1/2)(−k)2t2 + · · · ) and coincides with the series of
the exponential relaxation xe−kt to rest.



III.2 Path Integral for Propagator
For the transition(-amplitude) (called propagator)

〈

x′, t|x, t0
〉

:=
〈

x′|Ttt0 |x
〉

. (17)

two central ideas are exploited: (1) the (semi-)group property by
iterating the short time propagator and (2) by solving the short
time propagator with spectral analysis of translations and linear
approximations in time steps.
The (semi-)group property in kernel representation is well known

from quantum theory (1 = U †
t 1Ut =

∫

dx̃ | x̃, t̃
〉 〈

x̃, t̃ |) and in
Markov theory as the Chapman-Kolmogorov equation.

〈

x′, t|x, t0
〉

=

∫

dx̃
〈

x′, t|x̃, t̃
〉 〈

x̃, t̃|x, t0
〉

. (18)

This can be iterated N times. The short-time propagator becomes
linear in the time step ∆t = (t− t0)/(N + 1)

〈

x′, t+ ∆t|x, t
〉

:=
〈

x′|1 +G∆t|x
〉

. (19)



...

Now we use the kernel representation (10) and use the spectral
representation (a concept of duality) of the delta-function.

〈

x′, t+ ∆t|x, t
〉

=

∫

(dk/2π) eik(x′−x)

[

1 + ∆t
∞
∑

n=0

(ik)nGn(x)

]

.

(20)
The expression

∞
∑

n=0

(ik)nGn(x) =: G(x, k) (21)

will be called generator function. In the quantum case it will be
called (quantum) Hamilton function. This function depends on
the definition of the coefficients Gn(x) and therefore on the
ordering of derivatives and coefficients in G. The variable k is just
an integration variable and has, so far, no meaning as a canonical
conjugate of x as in classical Hamilton mechanics. Such meaning
only emerges under certain conditions to be discussed later.



...

The term 1 + ∆tG(x, k) can be re-exponentiated in the order ∆t,
such that we finally arrive at a complete integral solution

〈x′, t|x, t0〉 = limN→∞
1

(2π)N+1

∫

dxN . . .
∫

dx1
∫

dkN+1 . . .
∫

dk1 ·
[

· exp
{

∑N+1
j=1 G(xj−1, kj)∆t+

ikj(xj−xj−1)
∆t

∆t
}]

. (22)

As a short-hand notation of such path integral can be written as

〈

x′, t|x, t0
〉

=

∫

x→x′

Dx(τ)Dk(τ) e

∫ t

t0
dτ{ G(x(τ),k(τ))+ik(τ)ẋ(τ)}

.

(23)



III.3 L-function and S-functional

We can get rid of the dual variable by formally carrying out this
integration at each intermediate step as a kind of Fourier-Laplace
transform changing the variable k(τ) to ẋ(τ),

∫

Dk(τ) e

∫ t

t0
dτ{ G(x(τ),k(τ))+ik(τ)ẋ(τ)}

=: e

∫ t

t0
dτL[G](x(τ),ẋ(τ))

.

(24)
The function resulting from this transformation is called the
L-function and its integral over time is a functional of a path x(τ)
and is called the S-functional,

S[G][x(τ)] :=

t
∫

t0

dτ L[G](x(τ), ẋ(τ)) . (25)

Note, L is not necessarily the Legendre-transform of G, but more
generally defined by the Fourier-Laplace transform of (24).



...
For Markov processes (G = M) the negative of the L-function is
called Onsager-Machlup function and the exponents are written
with a minus sign, L[G] = −L[OM ] and S[G] = −S[OM ]. For
quantum processes the L-function is (with a factor of i) called
(quantum) Lagrange function and written as L[G] = iL and the
corresponding S-functional as action functional

iS[x(τ)] = i
∫ t

t0
dτL(x(τ), ẋ(τ)).

The Onsager-Machlup function for up to second order reads

L[OM ](x, ẋ) =

(

ẋ+D[1](x)
)2

4D[2](x)
(26)

The quantum Lagrangian of a Galilei particle with translation
symmetry breaking potential field and gauge field with coupling
constant q reads

L(x, ẋ) =
m

2
(ẋ− iqA(x))2 − V (x) . (27)

Note, no correspondence principle or “quantization” is needed to
find this.



...

Thus, the propagator of a Markov process can be written as

(

x′, t|x, t0
)

=

∫

x→x′

Dx(τ)e
−
∫ t

t0
dτ L[OM ](x(τ),ẋ(τ))

. (28)

Similarly, the propagator of a quantum process can be written as

〈

x′, t|x, t0
〉

=

∫

x→x′

Dx(τ)e
i
∫ t

t0
dτ L(x(τ),ẋ(τ))

. (29)



IV.1 Chain Rule for Markov
To illustrate the meaning of a path integral consider just two paths.

x

time 

x'

variable 

path via a

path via b

a

b

p(a|x)

p(x'|b)
p(b|x)

p(x'|a)

The usual chain rule results as a dynamical law of propagation

p(x′|x) = p(x′|a)p(a|x) + p(x′|b)p(b|x) = pa + pb . (30)



IV.2 Huygens-Born Principle
In the quantum case: Huygen’s principle (the amplitude is a
superposition of amplitudes with phases accumulated along paths
starting at x and ending at x′)

x

time 

x'

variable 

path via a

path via b

a

b

eiSx->b

eiSx->a eiSa->x'

eiSb->x'

√

p(x′|x)eiφ =
√

Iae
iSx→a+iSa→x′ +

√

Ibe
iSx→b+iSb→x′

=
√

Iae
iSa +

√

Ibe
iSb . (31)



...

together with Born’s rule: wave intensities as probabilities.
For two paths with equal absolute intensities Ia = Ib = I we get
for the transition probability a simple interference pattern

p(x′|x) = 2I(1 + cos(Sa − Sb)) . (32)

The total intensity (probability) oscillates between 0 (destructive
interference) and 4I (constructive interference), while an averaging
over phases yields 2I, as for a Markov process with equal
probabilities for each of two paths.



V.1 The large N Effect
The large N -effect is likely the most general reason that we can
comprehend the world at all. The large N -effect helps to isolate
properties. We show what we mean by this in an example of a
graph of a function of the form exp (−Nf(x)) with a function
f(x) having only little structur:



V.1 The large N Effect

Once we increase N to 10, the little structures will be amplified



V.1 The large N Effect
On increasing N to 50 the little structure becomes amplified to
separated sharp peaks:



V.1 The large N Effect
....



V.1 The large N Effect
The large N -effect in mathematical terms runs under the name of
saddle point approximation or method of steepest descend or
expansion around stationary action. In a simple form it can be
studied from

exp (−Nf(x)) (33)

We expand f(x) around one of its stationary solutions x0,

f(x) = f(x0) + f [2](x− x0)2 + O(x− x0)3 , (34)

and introduce the rescaled deviation η := (x− x0)/
√
N , resulting

in an expansion for the full exponent as

Nf(x) = Nf(x0) + f [2]η2 + O
(

η3/
√
N
)

. (35)

The exponent is dominated by the stationary value and a
sub-leading quadratic term. Higher order contributions die out
asymptotically with large N . Thus, asymptotically with large N a
Gaussian approximation with pronounced peak becomes exact.



V.1 The large N Effect

Let us comment on situations for the large N effect to occur:

◮ The emergence of the central limit theorem: N is the number
of weakly correlated random numbers summed up to an
average random number. Fluctuations become more and more
Gaussian as N increases. The proof is along the generating
function for cumulants, which is additive. N appears in
exactly the way discussed here.

◮ In path integrals for Markov and quantum processes and in
equilibrium partition sums: Either due to massive phase
cancellations in quantum path integrals (large fluctuating
imaginary exponents lead to randomly oscillating contributions
in the sum over paths), or due to exponential suppression in
weights of path integrals for Markov processes or statistical
partition sums.

. . .



. . .

◮ Then, the deterministic solution captures the essential physics
behind the path integral with suppressed fluctuations. In
quantum processes this corresponds to the "classical limit" (
historically described in the WKB approximation). In Markov
processes this corresponds to the limit of negligible diffusion,
and in thermodynamic equilibrium this corresponds to the
zero temperature limit where the energetic ground state
characterizes the thermodynamic ground-state.

◮ The condition for non-fluctuating behavior in real systems is
that typical process scales like wavelength, relaxation time and
temperature are very small as compared to the systems global
scales like effective system size, measurement time and
excitation energy.

. . .



. . .

◮ To illustrate the condition of non-fluctuating behavior for
quantum processes we compare two systems: (1) A billiard
ball of mass 0.15 kg in standard units and typical velocity of 5
m/s on a table of typical dimensions of 1.5 m. The
wavelength is h/(mv) = 8, 8 · 10−34 m and the ratio of the
wavelength to the table size is approximately 6 · 10−34. (2) An
electron in a quantum dot of size 10 nm. Its (Fermi-)
wavelength is of the same order of magnitude and hence the
relation of wavelength to effective system size is of order 1.
Obviously in case (1) quantum fluctuations are irrelevant,
while they are essential in case (2).



V.2 Deterministic limit of Quantum (and Markov)
processes

A path xc(t) that leaves the action stationary can serve as the
starting point for an expansion in deviations from this stationary
solution, η(t) := x(t) − xc(t),

S[x(t)] = S[xc(t)] + S2[η(t)] + δS[η(t)] . (36)

where S2[η] contains quadratic fluctuations in η and δS[η] all
higher orders. The stationary path fulfills the Lagrange equation of
classical mechanics,

δS[x(t)]

δx(t)
=
∂L

∂x
− d

dt

∂L

∂ẋ
= 0 . (37)

When δS[η(t)] turns out to be sub-leading, due to a large
N -effect, the path integral can be approximated by the so-called
stationary action approximation with Gaussian fluctuations as

〈xb, tb | xa, ta〉 ≈ exp {iSc(xb, tb;xa, ta)}F (xb, tb;xa, ta) , (38)

where Sc(xb, tb;xa, ta) is the action for the stationary path under
the boundary conditions



...

There are always fluctuations in the propagator.

When fluctuations become negligible or undetectable for
practical reasons, the system can best be described by the

classical deterministic Lagrange equation (in the Markov case
by the drift equation alone). This is a consequence of system
parameters (e.g. a large parameter N in S pronounces a stationary
point) and is an emergent phenomenon like the emergence of
Gaussian distributions with tiny variance in real statistical
ensembles (central limit theorem for large number of additive
random variables).



V.3 Emergence of Markov from Quantum
From the time evolution of a wave function

ψn(t) =
∑

m

〈n, t|m, t0〉ψm(t0) . (40)

the corresponding probability distribution has a non-Markovian
non-closed time evolution

Pn(t) =
∑

mm′

〈n, t|m, t0〉
〈

m′, t0|n, t
〉

ψm(t0)ψ∗
m′(t0) . (41)

Diagonal terms (m = n) do not contain phase factors, but the
off-diagonal terms do. Once, the off-diagonal parts can be
neglected, we arrive at a Chapman-Kolmogorov equation
characteristic for Markov processes,

Pn(t) =
∑

m

T (n, t;m, t0)Pm(t0) , (42)

with non-negative transition probabilities,

T (n, t;m, t0) = | 〈n, t|m, t0〉 |2 . (43)



...

In systems coupled only very tiny to some environment the phases
are typically much more sensitive to the coupling than the
amplitudes. After a characteristic time scale, called decoherence

time τdec, the phases become effectively random and a coarse
grained description for Pn cannot resolve the filigree information
buried in the rapidly fluctuating off-diagonal contributions.
Because of large sums over randomly fluctuating phases with
smoothly varying amplitudes, the systems dynamics can effectively
be described by a Markov process instead of the original quantum
process. Thus, on a time scale larger than the decoherence time
τdec, the tiny coupling to the environment, not captured

explicitly in the dynamics, will finally lead to the typical

behavior of Markov processes, which means some relaxation

and irreversibility. We will put this heuristic consideration on a
more firm basis when discussing open quantum systems in Chap. 5.



Exercise No. 3
1. Use the Lie series to solve ẋ = −γx.
2. Show (7) from Eq. (1) of the first lecture and derive (8), (9).
3. Derive (10) from (8).
4. Write down the general form of the Fokker-Planck equation

for a multicomponent configuration xµ

5. Show that δ(x(t) − x) with drift equation ẋ = −G1(x) solves
the Markov equation, if only G1 is non-zero in the generator
expansion.

6. Show the Gauss-Integral
∫

dx e−ax2+bx+c =
√

π
a
e

b2

4a
+c in two

steps: First b = c = 0 and considering the square of the
integral as performed in 2d with polar coordinates and then by
quadratic extension for b, c finite.

7. Show that the L-function

L[G](x, ẋ) = G0(x) +
− (ẋ+G1(x))2

4G2(x)
.

is the Legendre transform of a up to second order generator
function G(x, k) with respect to ∂−ikG(x, k) = ẋ
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I: Discrete vs. Continuous time
Velocities at time t must at least take one time step earlier or later
into account. As a discrete time derivative we take

⊓

f t := ft+1 − ft . (1)

In case of smooth behavior we can approximate linearly in the step
width n as

ft+n = ft + ct · n+R(t, n) ; lim
n→0

R(t, n)/(ct · n) = 0 . (2)

and the time derivative equalls the number ct at time t,

ḟt = lim
n→0

ft+n − ft
n

= ct . (3)

With smoot behavior we can relate the function and its velocity to
the same instant of time t and they can be related by a differential
equation of the form ḟ = V (f) with continuous function V . Then,
for a given value of f there is a unique value of ḟ . This spoils the
time reversibility of such differential equations.



I: Discrete vs. Continuous time

◮ Time reversible differential equations need a second poperty
as an initial condition such that a second order differential
equation results for each of them:

f̈ = A(f) (4)

with continuous function A.

◮ When the smoothness condition (2) is not fulfilled, a strictly
local in time derivative is meaningless and we have to rely on
discrete derivatives like (1) which depend on two times,
separated by one time step.

◮ As an important example consider the time evolution of facts
φt. Each component φtm can only have two values, 0 and 1.
The components of discrete time derivatives of facts can only
take three discrete values:

⊓

φtm ∈ {−1, 0, 1} . (5)



I: Discrete vs. Continuous time

We conclude:

◮ It is not possible to associate a smooth local in time velocity
to changing facts. Therefore, we cannot express the
discrete velocity of facts as a unique function of the fact
at the same instant of time. We need two instants of
time. This makes time reversible equations of motion
possible with only the facts as initial condition, but at
two instants of time.

◮ In permutation dynamics, a time reversed process to a process
generated by a permutation π will be generated by the inverse
permutation π−1. Which of the two is choosen can be fixed
when considering the facts at t = 0 and t = 1.



II: Notions and Notations
For simplicity of the presentation we stick to discrete variables and
recall that expectation values of some property A with possible
values Am are given by a probability distribution p with values pm
as

〈A〉 =
∑

m

Ampm . (6)

We refere to this notation as the set notation of mean. It is
invariant with respect to simultaneous relabeling of Am and pm.

〈A〉 =
∑

m

Ampm =
∑

m

Aπ(m)pπ(m) , (7)

with π ∈ SN a permutation of indices.
We can interpret (6) as an euclidean scalar product between vector
| p) and co-vector (A | ,

〈A〉 = (A|p) . (8)

We refer to this notation as the vector notation of mean. It is
invariant with respect to orthogonal transformations, including the
permutations, of course.



II: Notions and Notations

For any orthogonal transformation O we have

(OA|Op) =
(

A|OTOp
)

= (A|P ) = 〈A〉 . (9)

The value pm can be interpreted as the expectation value of fact
φ[m]:

pm =
(

φ[m]|p
)

. (10)

However, after a non-permutational orthogonal transformation O
the transformed fact cannot be interpreted as an original fact
state, since

φ[m]
l :=

(

Oφ[m]
)

l
=

∑

k

Olkφ
[m]
k =

∑

k

Olkδkm = Olm . (11)

Only for permutations Olm has N − 1 zeroes and one value of 1.



II. Notions and Notations

Facts also have a characteristic property:

φ
[m]
l · φ[m′]

l = φ
[m]
l δmm′ . (12)

This property gets lost after non-permutational orthogonal
transformations,

φ[m]
l · φ[m′]

l = OlmOlm′ 6= Olmδmm′ , (13)

such that transformed facts cannot be reinterpreted as different
facts. This is one of four motivations to introduce projection
operators (matrices) representing facts and density operators
(matrices) representing probabilities. In addition, we enlarge the
structure of the vector space by allowing complex numbers and
using a unitary scalar product in order to have full power in solving
secular equations for spectral decompositions.



II: Notions and Notations
A fact φ[m] we had already represented by the vector |m〉 having
zero entries for all of N components except for one entry of 1 at
the m-th component. Now we represent it by the projection
operator (matrix)

P [m] := |m〉 〈m| , (14)

where the essential projector properties hold:

∑

m

P [m] = 1 , P [m]P [m′] = P [m]δmm′ ; P [m]† = P [m] . (15)

Properties are lifted to Hermitian operators (matrices)

A =
∑

m

AmP
[m] (16)

and probability distributions to so-called density operators

ρ =
∑

m

pmP
[m] . (17)



II: Notions and Notations

The linear space of these operators can easily be equipped with its
own canonical unitary scalar product the so-called Hilbert-Schmidt
metric,

(A | B) := Tr
{

A†B
}

= (B | A)∗ (18)

where TrA :=
∑

mAmm is called trace and is the sum over all
diagonal elements. It has the nice cyclic invariance property
Tr {ABC} = Tr {BCA}. We can now write the expectation value
in matrix notation as

〈A〉 = (A | ρ) (19)

Unitary transformations U on vectors translate to adjoint
transformations on operators:

ρ = U †ρU ; A = U †AU (20)



II: Notions and Notations
Now, the expectation value is invariant under unitary
transformations of both, A and ρ, as can be concluded from the
cyclic invariance and U †U = 1,

〈A〉 = (A | ρ) =
(

A | ρ) . (21)

Furthermore, in matrix notation the unitarily transformed fact
projector is again a projector, our second motivation for matrix
notation:

P [m]
2

= P [m] (22)

Its matrix elements are P [m]
lk = UmlUmk and such projector is

usually non-diagonal in the original fact states representation and
it will typically not commute with original P [m], such that both
cannot be diagonalized simultaneously. Thus the new fact
|α〉 = U |m〉 is typically incompatible with the original fact.
However, this is not a drawback but an enrichment, since there are
incompatible facts in nature which cannot be decided to be true or
false simultaneously (e.g. rotation around two distinct axes or
position vs. translation of objects).



II: Notions and Notations
The differential equation of motion in continuous time Markov
processes can be written in vector notation as

(m|ṗt) = (m|Mpt) (23)

which clearly shows that ṗ at instant of time t is a functional of p
at this instant of time. Thus, such processes cannot be reversed in
time since the probability flux is uniquely given by the probability
distribution and cannot be reversed to start with the same
distribution in reversed order. Indeed, the stochastic matrices
generated by M usually do not have inverse elements within the
group of stochastic matrices. Typically inverse elements become
negative and cannot be interpreted as transition probabilities any
more. Finally, the vector notation allows for the introduction of
vectors representing time derivatives of properties in the following
sense:

(A|ṗt) = (A|Mpt) =
(

MTA|pt
)

; Ȧ = MTA (24)

There are fluctuation relations between A and Ȧ.



II: Notions and Notations
The differential equation of motion in continuous time quantum
processes, ρt = e−iLtρ0 = e−iHtρ0e

iHt, can be written in matrix
notation as

(

P [m] | ρ̇t
)

=
(

P [m] | − iLρt
)

=
(

P [m] | − i [H, ρt]
)

(25)

The equation of motion is called von-Neuman equation

ρ̇ = −i [H, ρ] . (26)

Now, due to the commutator, the probability flux is not a
functional of the probability distribution, but rather of the
off-diagonal components of the density matrix. This allows for a
time reversible process, our third motivation for matrix
notation. These off-diagonal components are usually called
coherences. I prefer the notion of flux capacities. In explicit
matrix notation ones has

ρ̇mm =
∑

n6=m

Imn ; Imn = 2 Im (Hmnρnm) . (27)



II: Notions and Notations
For a quantum state ψm =

√
pme

iϕm one has

ρmn =
√
pmpne

iϕm−ϕn . (28)

The meaning of pre-probabilities is: diagonal elements of ρ
capture probabilities and off-diagonal elements capture flux
capacities. The fact that only the imaginary part of Hmnρnm
(n 6= m) counts dynamically allows for so-called gauge freedom
between ρ and H.
Finally, the matrix notation allows for the introduction of operators
representing time derivatives of properties in the following sense:

∂t 〈A〉t = (A | ρ̇t) = (A | − iLρt) = (iLA | ρt) (29)

Thus, the so called Heisenberg-equation

Ȧ = i [H,A] (30)

represents an operator for the time derivative of A. Typically A
and Ȧ do not commute which results in unavoidable
fluctuation-relations between them.



III. Integrating out Irrelevant Variables

◮ When only a reduced set of relevant variables are
characteristic for our investigation we would like to have
closed equations for only them.

◮ In terms of a probability distribution for the reduced variable
A(~x) (typically the number of degrees of freedom of A is
much lower than that of ~x) the construction of the distribution
for A in terms of the distribution for ~x is straightforward

Pt(A) := 〈δ(A−A(x)〉Pt(x) . (31)

We will show how this integration works a little later.

◮ If Pt(x) follows a Master equation, so does Pt(A) and the
Kramers-Moyal coefficients can easily be derived by simply
studying the moments of deviations δA in short time. This
is already the beautifully simple recipe for Markov processes
and nothing spectacular happens to the formalism as such.



III. Integrating out Irrelevant Variables

◮ In terms of pre-probabilities or corresponding projectors
something very interesting happens: a reduced projector is
no longer described by a projector but by a more general
density matrix ρ which fulfills three conditions: (a) it is

Hermitian, (b) non-negative (for all m Tr
{

P [m]ρ
}

≥ 0)and

(c) normalized to unity (Tr ρ = 1). This is our fourth
motivation for matrix notation. However, reduced facts
remain facts.

This can be understood by the following discussion of a
vector-state in a product Hilbert space HA × HB

| ψ〉 =
∑

Ai,Bj

ψ(Ai, Bj) | Ai〉 | Bj〉 . (32)

The corresponding projector reads

Pψ =
∑

Ai,Bj ,Ak,Bl

ψ∗(Ak, Bl)ψ(Ai, Bj) | Ai〉 | Bj〉 〈Bl | 〈Ak | .

(33)
. . .



. . . Once we consider observables belonging to A and not to B we
can calculate their expectation values with the help of a state ρA
defined by the following constraint:

〈f(A)〉 = Tr
AB

{Pψf(A)} = Tr
A

{ρAf(A)} , (34)

and ρA results from a partial trace along B over Pψ,

̺A· := Tr
B

{Pψ·} . (35)

The matrix representation of ρA is then (our third motivation for a
matrix notation)

(ρA)ki =
∑

Bl
ψ∗(Ak, Bl)ψ(Ai, Bl) . (36)

We leave it as an exercise to show that this a density matrix.
Density matrices which reduce to projectors ρ = ρ2 are called pure
states. We leave it also as an exercise to show that reduced fact
states are again fact states.



III. Integrating out Irrelevant Variables
In the context of path integral representations we deal with
integrals of the type of a partition (sum) integral over an
high-dimensional space,

Z =

∫

dNx e−S(x1,...,xN ) . (37)

As we will not elaborate further on path integrals in this course I
will only sketch some ideas how to get an effective dynamics by
integrating out irrelevant variables.

◮ Symmetries of S[x] call for adjusted coordinates y some of
which will not show up in S[x[y]] and will be integrated out.

We demonstrate this on the simplest possible scenario with just two
coordinates a and a∗ and S = S(aa∗). Since S has a rotational
symmetry in the complex a-plane we introduce radial coordinates r
and angle φ to write a = reiφ and the measure transforms like
da ∧ da∗ = (dreiφ + ireiφdφ) ∧ (dre−iφ − ire−iφdφ) = 2idφ ∧ dr

Z =

∫

da ∧ da∗e−S(aa∗) = 2πi

∫

dr2 e−S(r2) . (38)



III. Integrating out Irrelevant Variables

◮ We have a relevant variable X which accumulates many of
the variables xi. We introduce the constraint δ(X −X[x])
into the integral, rewrite it by the Fourier representation of
the δ-function on introducing a dual to X coordinate K,
rewrite terms in S by the constraint and try to integrate out
all of the original (now irrelevant) variables.

We demonstrate this on a very simple scenario of additive X and
S to keep it simple: X =

∑

i xi and S[x] =
∑

i V (xi). Then, a
probability density for X can be written (with normalization
constant Z) as

P (X) = Z−1
∫

dNx e−
∑

i
V (xi)δ(X −

∑

i

xi) =

= 2πZ−1
∫

dK

∫

dNx e−
∑

i
V (xi)+iK(X−

∑

i
xi) . (39)

On sorting the exponent we can write . . .



. . .

P (X) = 2πZ−1
∫

dKeiKX
∫

dNx e−
∑

i
(V (xi)−iKxi) =

= 2πZ−1
∫

dKeiKXeN ·ln(
∫

dx e−V (x)−iKx) . (40)

Since N is large, we make a Gaussian approximation around
assumed minimum at x = 0: V (x) ≈ ax2 with positive a and
calculate the Gaussian integral in x and then in K and find:

P (X) = Z̃−1
∫

dKeiKXe−NK2/4a =

= Z̃−1e−aX2/N , (41)

with Z̃ =
√

π
a/N by normalization. In this simple scenario we

finally arrived at the full distribution of relevant variable X.



IV. Projecting to Subspace of Relevance
Reducing variables by projection techniques yields a main
conclusion: The resolvent form of quantum processes

ρ(z) = i [z − L]−1 ρ0 ; z = ω + iǫ ; ǫ → 0+ , (42)

can be kept with three modifications that capture the essence
of effective dynamics of relevant variables in an environment of
irrelevant variables. The (semi-) group property, however, can only
be restored when neglecting memory effects.

1. When sums over the environmental frequency spectrum
should be replaced by integration due to the impossibility to
resolve its discrete character, then a dynamical phase
transition to irreversible dynamics occurs. It shows up in
the breaking of Hermiticity of L.

2. The effective non-Hermitian Liouville becomes frequency
dependent reflecting memory effects due to the environment,

L(ω) = H(ω) − iΓ(ω) ; H†(ω) = H(ω) ; Γ(ω) ≥ 0 . (43)

. . .



IV. Projecting to Subspace of Relevance

. . .

3. Initial correlations show up in the frequency dependent
modification of the initial state ρ0(z).

When the frequency dependence of L and ρ0 is inessential in the
dynamic range to be considered (e.g. for long-time asymptotic
behavior corresponding to z → 0) memory effects die out and a
semi-group dynamic can be a god approximation.

In the following we give a detailed derivation of the above
statements relying on the quite general projector formalism
initiated by Nakajima and Zwanzig ≈ 60 years ago. Furthermore,
we entirely work in the complex frequency setup instead of a time
dependent setup because we know from electrical engineering that
this is appropriate to handle memory effects. Mathematically,
memory is local in complex frequency while it involves convolution
time integrals in a time dependent picture.



Equation of Motion in Open Systems

◮ Consider a system coupled to an environment. The
environment has not to be spatially outside of the system, but
it has to contain a huge number of variables which cannot be
followed in detail but are coupled to our relevant variables.
This characterizes our system as being "open". We do not
use any weak coupling assumption but assumptions about the
spectral properties instead.

◮ The reduced density operator is defined by a projector P on
the Hilbert-Schmidt space

ρ := Pρtot . (44)

Here ρtot is the total density operator of the total closed system.
As an example one may take

P· = Tr
E

(·) ⊗ ρE , (45)

where ρE is the would-be stationary density operator of the
environment - if the environment was not coupled to the system.



Equation of Motion in Open Systems

◮ The reduced density operator ρ is an element of the P-space
and can be represented by a d× d dimensional density matrix
when the closed system’s Hilbert space is d-dimensional.

◮ The projector on the complement to the P-space is denoted
as Q := 1 − P. Both projectors fulfill the projector property
(P2 = P, Q2 = Q) and the complement property
(PQ = QP = 0.) The complement space is simply denoted
as Q-space.

◮ We like to construct the dynamic equation for the reduced
density operator ρ(t) by using the decomposition,

ρtot = ρ+ ∆ρcorr , ∆ρcorr := Qρtot , (46)

where ∆ρcorr captures correlations between system and
environment. The group-property of the total system
transforms to the resolvent equation of the total system

ρtot(z) = i [z − Ltot]
−1 ρtot0 . (47)



Equation of Motion in Open Systems

We start by decomposing ρ’s,

ρ(z) = iP [z − Ltot]
−1 (P + Q)ρtot0

= iP [z − Ltot]
−1 Pρ0 + iP [z − Ltot]

−1 Q∆ρcorr
0 ,(48)

and L,
Ltot = LP + LPQ + LQP + LQ , (49)

and use the algebraic identities

[A−B]−1 = A−1 +A−1B[A−B]−1 , (50)

[A−B]−1 = A−1 + [A−B]−1BA−1 , (51)

which can be verified by multiplication with A−B from the right
or from the left, respectively.



Equation of Motion in Open Systems
Therefore we can write for the projected total resolvent

P[z − Ltot]
−1P = [z − LP ]−1 +

+ [z − LP ]−1 (LQ + LPQ + LQP) [z − Ltot]
−1 P ,

Q[z − Ltot]
−1P = Q [z − LQ]−1 P +

+ [z − LQ]−1 (LP + LPQ + LQP) [z − Ltot]
−1 P ,

P[z − Ltot]
−1Q = P [z − LQ]−1 Q +

+ P [z − Ltot]
−1 (LP + LPQ + LQP) [z − LQ]−1 .

Due to the complementary character of projectors we conclude

P[z − Ltot]
−1P = [z − LP ]−1 +

+ [z − LP ]−1
(

LPQ [z − LQ]−1 LQP

)

[z − Ltot]
−1 P , (52)

P[z − Ltot]
−1Q = P [z − Ltot]

−1 LPQ [z − LQ]−1 . (53)

(52) tells that the total resolvent projected to P-space can be
written as the resolvent of an effective Liouville operating solely on
P-space, . . .



P[z − Ltot]
−1P = [z − L(z)]−1 , (54)

. . . where the effective Liouville reads

L(z) = LP + LPQ [z − LQ]−1 LQP . (55)

The first term LP is the closed system’s Liouville in the
absence of an environment and the second term describes
virtual processes in the system triggered by the environment,
LPQ [z − LQ]−1 LQP , hopping to Q-space, there taking a lift with
isolated Q-propagator and finally hopping back to P-space. The
effective Liouville can be used as well in (53) and we find

P[z − Ltot]
−1Q = [z − L(z)]−1 LPQ [z − LQ]−1 . (56)

With (55) and (56) we can rewrite (48)

ρ(z) = i [z − L(z)]−1 (ρ0 + ∆ρcorr
0 (z)) , (57)

with
∆ρcorr

0 (z) = LPQ [z − LQ]−1 ∆ρcorr
0 (58)



Equation of Motion in Open Systems

∆ρcorr
0 (z) appears as a virtual change of initial state within the

system, caused by the initial correlation (Qρtot0) that gets a lift
by the isolated Q-propagator and hops to P-space.

◮ Equation (57) is the announced result. It is an equation of
motion defined solely for states of the system.

◮ The environment enters in an operative way through the
couplings, LPQ,LQP , and the isolated Q-propagator,
[z − LQ]−1.

◮ By decomposing the Q propagator in its Hermitian and
Anti-Hermitian part for ǫ → 0+ by

[z − LQ]−1 = P [ω − LQ]−1 − iπδ(ω − LQ) , (59)

where P stands for the Cauchy principal value on integration
and δ(x) for the delta-function on integration. From this
decomposition all of the remaining statements of this section
can be concluded.



04. Exercises

1. For a trajectory x(t) a time reversed path with time reversal at
t = 0 is defined by: x̃(t) = x(−t). Show that ˙̃x(t) = −ẋ(−t) and
¨̃x(t) = ẍ(−t). A dynamic is said to be time reversal symmetric if
x̃(t) is also a solution of the dynamics, if x(t) is a solution. Show
that a dynamic equation ẋ = v(x) cannot be time reversal
symmetric by considering t = 0 and that a dynamic equation of type
ẍ = a(x) is not in conflict with time reversal symmetry at t = 0.

2. We have seen that fact states don’t have local in time derivatives,
but only discrete derivatives with values∈ {−1, 0, 1}. Argue, that on
averaging with a probability distribution p with components pm a
local in time derivative of averaged facts can make sense and why
one could think of this as a large N effect.

3. Show the cyclic invariance and the unitary invariance of the trace
and verify (21) and (22).

4. Show by the von-Neumann equation that current flux in quantum
processes is given by (27).

5. Show that (31) is the appropriate distribution for all functions of
reduced variable A(x). . . .



. . .

6. Show that (36) is a density matrix, not a projector, in general,
but in case of facts it reduces to facts. Construct it for two
two-value systems with originally pure states for
(a) product state

| ψ〉 = | A+〉 | B−〉 ,

(b) entangled states

| ψ〉 =

√

1

2
( | A+〉 | B−〉 ± | A−〉 | B+〉) .

7. Show by using (59) that the effective Liouville can be written
in the form of (43).
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I.1: The Problem of Equilibrium
The thermodynamic laws formulate universal experiences:

0. Systems of many constituents under stationary boundary
conditions reach a stationary state after some characteristic
relaxation time.

1. Energy is always preserved, but can change into many forms.

2. Processes run by themselves only in a certain time order.

◮ However, irreversibility described in 0. and 2. is in direct
contradiction to the reversibility of the known basic equations
of motion by Newton, Maxwell, Einstein and von-Neumann.

◮ A most general formulation of thermodynamic laws - without
resorting to an explicit dynamic theory - is achieved in the
axiomatic thermodynamics (Clausius, Caratheodory, Lieb and
Yngvason) where the entropy as a state quantity serves to
identify processes that run the correct time ordering. In
addition, entropy serves as a state variable that corresponds
to the everyday concept of heat.



I.1: The Problem of Equilibrium

◮ With the statistical interpretation (Boltzmann, Einstein,
Gibbs) of entropy as measure for the degree of dispersion

of energy over possible states, a new interpretation and
calculational options arose for the equations of state of
matter.

◮ The interpretation is: The natural time ordering is such that
in the overwhelming majority of cases the dispersion of energy
over possible states increases with increasing time.

◮ However, a justification of this statistical thermodynamics in
the context of actual dynamic laws still appears contradictory.
In the literature there is no common agreement on how to
solve this fundamental puzzle.

◮ Here is my view, heavily influenced by my teacher J. Hajdu
and by J. Polonyi, on solving the puzzle:

◮ The irreversibility arises in open systems as a dynamic

phase transition with breaking of the time reversal

symmetry.



I.1: The Problem of Equilibrium

My solution in short:

◮ A system is connected to an environment (possibly within the
system’s volume) with a large number of variables, the
dynamics of which cannot be resolved in detail and can only
be captured by an energy density in an effective dynamics of
the open system.

◮ This creates a relaxator in the effective Liouville by a dynamic
phase transition that captures irreversibility.

◮ The open system reaches a typically unique stationary state
after a characteristic relaxation time.

◮ If the energy is conserved in the stationary state the
micro-canonical distribution of statistical thermodynamics is
favored as stationary state.



I.2: The Problem of Decoherence

Decoherence is a popular notion with lots of vague interpretations.
I like to fix it for this lecture by exclusion and by a definition.
It is often written or said that in a superposition of two states
(which are assumed to be orthonormal),

|ψ〉 = α |1〉 + β |2〉 , |α|2 + |β|2 = 1 (1)

the systems is in a sense in both states simultaneously. This does
not make sense! Orthogonal states correspond to mutually
exclusive properties which can never be true simultaneously.
To clarify the meaning of a superposition let us have a look at the
projector Pψ = |ψ〉 〈ψ| as a matrix in the 1, 2 basis:

Pψ =

(

|α|2 αβ∗

βα∗ |β|2

)

(2)

Therefore, the probabilities for finding one of the two states to be
true are |α|2 and |β|2, respectively. . . .



I.2: The Problem of Decoherence
However the off-diagonal elements (coherences) show that there
will likely appear Rabi oscillations of these probabilities in a
quantum process when starting with such state ψ, because the
coherences serve as flux capacities
What can be said also is: If state ψ corresponds to a property
which can be true or false, for finite α, β, it is incompatible with
the properties 1 and 2, because its overlap is neither 1 nor 0. In
the first case it would be the same property as 1 and in case 0, ψ
would be 2, a mutually exclusive property to 1.
So neither mutual exclusion nor incompatibility of states

should be misinterpreted as simultaneous existence.

Now we can say what is ment by quantum coherence: Since

coherences of a superposition are current capacities, their

presence will likely lead - in a reversible quantum process - to

oscillatory behavior in the probabilities to find one of several

mutually exclusive properties. Very often in every day
experience such oscillatory behavior is not observed. This leads us
to our definition of decoherence. . . .



I.2: The Problem of Decoherence

. . .
We say that a system shows decoherence, when the coherences

in a certain basis begin to decrease and become

exponentially small after some characteristic time scale, called
decoherence time τdec.

The shrinking of decoherences goes along with the shrinking of

flux capacities and finally must lead to a stationary state.

Therefore decoherence can only show up within an irreversible

process and the basis to be used is related to the stationary

state the system evolves to.

It is thus substantiated to look for decoherence in an open

quantum system context.



II.1: Relaxation to a Stationary State in Open Systems
The Laplace transformed density of states ρ(z) allows for an easy
analysis of the long time limit in the usual sense as a long time
average, defined by

f∞ := lim
ǫ→0+

ǫ

∫ ∞

0
f(t)e−ǫtdt (3)

for a quite arbitrary time dependent function f(t). Any oscillations
that could still be present at large times in f(t) will be averaged
out. In the same sense it holds true that the long time limit is
given by

f∞ = lim
z→0

−izf(z) (4)

where f(z) is the Laplace transformed of f(t).
We take this limit on the equation of motion for open systems of
Chap. 4,

ρ∞ = lim
z→0

z [z − L(z)]−1 (ρ0 + ∆ρcorr
0 (z)) (5)

and exclude that ∆ρcorr
0 (z) may accidentally have a singular

behavior for z → 0+. . . .



II.1: Relaxation to a Stationary State in Open Systems
. . . The long time limit is then determined by the zero limit of
z/(z − L(z). This limit is non-vanishing due to the existence of
zero modes of L(0+).
Let us denote the projector on the space of zero modes of L(0+)
by Π0

L(0+), then the long time limit of the density operator reads

ρ∞ = Π0
L(0+) (ρ0 + ∆ρcorr

0 (0+)) . (6)

That the effective Liouville must have a zero mode is a
consequence of probability conservation which means
Tr ρ(z) = i/z and Tr L(z)ρ0 = 0 for every z and ρ0. Thus, the
effective Liouville has the unit matrix 1 as a left eigenmatrix with
eigenvalue 0 and, consequently, there must exist a right
eigenmatrix with eigenvalue 0, too. In generic systems the zero
mode will be non-degenerate and by normalizing the right zero
mode to unit trace we can write the projector on the zero mode as

Π0
L(0+) = |ρ∞) (1| . (7)

The notation refers to the Hilbert-Schmidt scalar product. . . .



II.1: Relaxation to a Stationary State in Open Systems
. . .
In generic open systems a stationary state is reached in the

long time limit being independent of initial conditions, even

if strong initial correlations with the environment had been

present.

The heuristic estimate for the relaxation time τ after which the
long time limit emerges is given by the virtual processes (hopping
rate 1/τhopp and characteristic time TQ of oscillations for low
frequencies ω within Q-space present in the effective Liouville) and
reads τ = τhopp · (τhopp/TQ).

Equation (7) will change to a sum of projectors on different
eigenstate combinations of zero modes in the case of degenerate
zero modes. It is obvious that in such case the scalar product of
left eigenmatrices with the initial state is not simply unity and
these scalar products store information about the initial state. This
opens a way to design non-generic open systems such that initial
conditions can influence the final stationary states as discussed by
V. Albert in 2018 for systems with semi-group dynamics.



II.2: Relaxation to a Stationary State in Open Systems

with Energy conservation
Since L(0+) = H(0+) − iΓ(0+) is no longer frequency dependent
we can use it to construct a semi-group dynamics. It is known
since 1976 (Lindblad) that in such case the Liouville can be written
as [H, ρ∞] − iΓρ∞ = 0, where H is the effective Hermitian
Hamiltonian of the open system and Γ a relaxator, which is not
necessarily Hermitian.
Now, we make an assumption. We assume that the stationary

state is an energy conserved state within the system,

[H, ρ∞] = 0 , (8)

For such equilibrium situation we then also have

Γρ∞ = 0 . (9)

Thus, the stationary state commutes with the Hamiltonian and will
be diagonal in the energy representation H |n〉 = En |n〉 and now
its time to look at representations of the relaxator.



Technicalities

A density matrix in any orthonormal basis {|n〉}n=1...d with
〈n|m〉 = δmn can be written as ρ =

∑

nm ρnm |n〉 〈m| with
ρnm = 〈n| ρ |m〉.
Any super-operator A can with such ONB be written as

A· =
∑

mn,rs

Ars,mn |r〉 〈s| 〈m| · |n〉 , (10)

with
Ars,mn = 〈r| A ( |m〉 〈n|) |s〉 . (11)

For L and thus for Γ the probability conservation leads to
Tr Γ· = 0 which leads to

∑

m

Γmm,rs = 0 for all r, s . (12)



II.2: Stationary State with Energy Conservation

The stationary state is diagonal in energy representation
ρ∞ =

∑

n pn |n〉 〈n| with non-negative probabilities pn and (9)
reads

0 =
∑

n

Γrs,nnpn for all r, s . (13)

We specify to r = s and decompose to bring in probability
conservation (12)

0 =
∑

n6=r

Γrr,nnpn + Γrr,rrpr =
∑

n6=r

(Γrr,nnpn − Γnn,rrpr) . (14)

Decomposing Wnr := −Re Γnn,rr, Ynr := Im Γnn,rr we find

∑

n6=r

Wrnpn −Wnrpr = 0 , (15)

∑

n6=r

Yrnpn − Ynrpr = 0 , (16)



II.2: Stationary State with Energy Conservation

Equation (15) looks like a stationary version of a Pauli Master
equation commonly known to describe the irreversible evolution
into equilibrium states with transition rates Wrn, fulfilling the
equipartition law,

Wrnpn −Wnrpr = 0 for r 6= n . (17)

Wrn can indeed for n 6= r be expected as non-negative transition
rates since

∑

n6=r
Wnr = −Wrr ≥ 0. The equipartition law

expresses a so called micro reversibility of the dynamics saying that
for the joint probability to find states r and n, separated by one
time step, together, it does not matter which of both is taken at
the earlier time or at the later time. From (17) the stationary
distribution follows by recursion

pn =
Wn0

W0n
p0 . (18)

. . .



II.2: Stationary State with Energy Conservation

. . . In a system with strict energy conservation, the transition rates
within the energy shell are all equal (both according to Fermi’s
Golden Rule as well as according to the principle of ignorance) and
one gets the micro canonical uniform distribution,

pn ≡ 1/d . (19)

In a system in a heat bath, the transition rate to the energetically
higher state is by the Boltzmann factor Wnm

Wmn
= ce−(En−Em)/T of

the energy difference over bath temperature T smaller than the
reverse process, and for the stationary distribution one finds the
canonical distribution,

pn =
e−En/T

∑d
k=1 e

−Ek/T
. (20)



III.1: Effective Eigenvalues of Effective Liouville
We like to find the time dependent density of states of an open
quantum system from the spectrum of eigenvalues of the effective
Liouville. We take the equation of motion and use the spectral
decomposition of the resolvent

ρ(z) = i [z − L(z)]−1 ρ0(z) = (21)

= −i
N
∑

k=0

ak(z)

[z − λk(z)]
Rk(z) . (22)

Here Rk(z) is the right eigenmatrix of the effective Liouville
corresponding to eigenvalue λk(z) and

ak(z) = (Lk(z) | ρ0(z)) (23)

is the scalar product between the corresponding left-eigenmatrix
Lk(z) and the effective initial state ρ(z). Left- and
Right-eigenmatrizes are chosen orthogonal and normalized as
described in Chap. 2.



III.1: Effective Eigenvalues of Effective Liouville
Now we assume that ak(z) and Rk(z) are non-singular in z and
that isolated poles appear for ρ(z) at so-called effective eigenvalues
zk = ωk − iγk with γk ≥ 0, defined by

zk − λk(zk) = 0 . (24)

Then the inverse Laplace transform can be performed, defined by,

ρ(t) =
i

2π

∫ ∞+i0+

−∞+i0+
dz e−izt [z − L(z)]−1 ρ0(z) , (25)

with the method of residue resulting in

ρ(t) = ρ∞ +
N
∑

k=1

1

2

(

Ake
−iωkt +A†

ke
iωkt

)

e−γkt . (26)

Here the stationary state ρ∞ has been separated and right
eigenvectors at zk with factors ak(zk) and factors
1/(1 − dλ/dz(zk)) have been put together to matrices Ak and it
was written in a way to make Hermiticity obvious.



III.2: Decoherence with Respect to the Stationary State
From (26) we can take the matrix elements in a basis where ρ∞ is
diagonal, as before, and write

ρnm(t) = pnδnm +
N
∑

k=1

1

2

(

(Ak)nm e
−iωkt + (Ak)

∗
mn e

iωkt
)

e−γkt .

(27)
It can be seen that coherences die out exponentially fast and that
the smallest non vanishing value of γk sets the time scale of
decoherence and for the re-population of energy states, usually
associated with dissipation.

τ = τdec =
1

γmin
. (28)

In non-generic cases, the diagonal elements are totally unaffected,
e.g., when the interaction with the environment preserves the
systems energy throughout the process. Such cases are called pure
dephasing cases, since no re-population occurs but only decay of
coherences. However, this is an unusual situation.



05. Exercises

1. Verify Eqs. (3) and (4) of this chapter.

2. It is said in the lecture that degenerate zero modes may storage
information about an initial state but non-degenerate zero modes do
not. Why ist that? Think about the role of probability conservation
and use Eqs. (6) and (7).

3. Heuristic estmates of time scales are very instructive for
understanding what is going on. We simplify by associating typical
time scales with parts of the Liouville as follows: LP ∼ T−1

P , with
TP a typical period of oscillations within the isolated system

(z − LQ)−1 ∼ T
[ω]
Q , with T

[ω]
Q a typical period of oscillations in the

isolated environment for frequency range around ω. For low
frequency range the characteristic time of period is simply denoted
as TQ. Finally LPQ,LPQ ∼ τ−1

hopp, where τ−1
hopp is the hopping rate

between system and environment and the corresponding hopping
time is τhopp.

. . .



05. Exercises

. . .

3 Now, find out the conditions for

0.1 When is the effect of the environment small on the system?
0.2 When can initial correlations be neglected?
0.3 When is the relaxation time much larger than the hopping

time?
0.4 What is the effect of the hopping time being much larger than

the geometric mean of system time and environment time?

4 Verify the technicalities from Eq. (10) to Eq. (14) or find bugs.

5 Take as an equation
∑

n6=r
Wrn(pn − pr) = 0 . Keep in mind

that probability conservation must be respected and find a
criterion in terms of a determinant for a 3-level system, when
the solution of such equation is not uniquely given by
pn ≡ 1/3.

6 Check the integration by residue from Eq. (25) to Eq. (26).
Expand λk(z) around each pole zk into a series of powers
(z − zk). . . .



05. Exercises

. . .

7 What does probability conservation, Tr ρ = 1, mean for the
matrices (Ak)mn and (Ak)

∗
mn in Eq. (27)?

8 Very often one reads that decoherence is typically much faster
than dissipation (re-population of energy states). What do
you think now?
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I.1: Why looking for?

Stochastic processes are described by probabilities for properties
evolving in time by equations of motion based on (semi-)group
dynamics. They are not necessarily in conflict with determined
time evolution of the properties themselves. It is just easier to
predict a relative frequency for large numbers N than to predict it
for N = 1 due to the large N effect. In several interpretations of
quantum theory it is fashionable to think that a prediction of
individual facts is impossible and not that it is just harder than to
predict relative frequencies.
When we observe determined behavior of properties on average as
scientists we usually ask what is the behavior on an individual
level. To assume that on an individual level a present state does
not determine the state in the next time step, but has a huge
number of equally possible outcomes, amounts to stop asking for
sufficient reasons of events, which is exactly opposite to a scientific
approach to reality.



I.1: Why looking for?

A conception that in each moment the world separates into
infinitely many undetermined worlds one of which is actually
chosen with instantaneous influences over arbitrary distances as a
supernatural miracle usually would be declared as superstition.

Therefore, let us ask for a deterministic representation of

stochastic processes including quantum processes to keep the

scientific principle of searching for a sufficient reason intact.



I.2: What is a deterministic representation?
The stochastic process is characterized by an initial distribution
Pt0

(x) and corresponding time dependent distribution Pt(x) for
each time t > t0. If one manages to find for each initial value

x(t0) a unique path x(t), such that for each distribution Pt0
(x)

of initial values x(t0) the resulting paths xk(t) (k labeling such
corresponding paths) lead to the time dependent distribution

on averaging over quasi-continuously many paths

Pt(x) = limN→∞
1
N

∑N
k=1 δ(x − xk(t)) , (1)

we call this ensemble of paths a deterministic representation

of the stochastic process. It is obvious that a deterministic
representation is by no means unique for a given stochastic
process. Think of changes in paths that have no effect on the
averaging. For discrete variables x the δ-function has to be
replaced by a Kronecker δ,

Pt(x) = limN→∞
1
N

∑N
k=1 δx,xk(t)) , (2)



II.1 Integral Curves of Flux - Hydrodynamic Deterministic

Representation
For every stochastic process with continuous variable in

continuous time a deterministic representation can be

explicitly constructed in hindsight, i.e. when the evolution of
the distribution is known already. The corresponding paths x(t)
are simply the integral curves of the probability flux

vt(x) := jt(x)/Pt(x),

ẋ(t) = vt(x(t)) . (3)

By construction the paths are smooth. I denote it as the
hydrodynamic deterministic representation of the stochastic
process. In case of external randomness e.g. by random scatterers
acting on a particle we know that realistic paths should not
smoothly follow the flux field, but are irregular motions, better
described as fractal curves rather than smooth paths. Thus, when
it is possible to observe individual paths in Markov processes,
they usually do not coincide with the hydrodynamic

deterministic representation.. . .



II.2 Bohmian Mechanics
. . . In the case of quantum systems the hydrodynamic deterministic
representation is known as de Broglie-Bohm theory or Bohmian
mechanics. Its appealing feature is that no other variables besides
the original configuration variables have to be taken into account.
Randomness just stems from the unknown initial conditions

of configuration variables. Two predictions: (1) In stationary states
the deterministic realization stays at rest, distributed like the initial
distribution. It is then plausible that stationary states of charged
particles do not radiate. (2) Paths do not intersect each other
(unique velocity field). For example, paths in a double slit
experiment:

Figure: Paths for the two-slit experiment. (adapted by Gernot Bauer from Philippidis, Dewdney, Hiley 1979:
23, fig. 3) taken from Stanford Encyclopedia of Philosophy



II2. Bohmian Mechanics

. . . However, it does not mean that we can actually pin down this
motion in a probabilistic prognostic sense. For example, the
conditional probabilities for finding an interference pattern at
detectors with particles entering through known initial slit positions
vanishes and the corresponding wave function and its flux do not
show any interference patterns. Thus, it is speculative that this
hydrodynamic deterministic representation describes the true
particle motion, because it is not unique and we do not know

how to experimentally check the priority of this

hydrodynamic representation as long as the accuracy to resolve
individual paths is limited by the phase sensitivity of observational

influence destroying just that interference pattern for which

we like to see the paths.



II2. Bohmian Mechanics for Discrete Variables
When extending Bohmian dynamics to discrete variables (MJ
unpublished) (e.g. for occupation numbers in quantum field
theory) we have to define the probability flux in a convenient way.
We do it the most general way in continuous time by Kirchhoff’s
law with Hamiltonian H. With projector Pn = |n〉 〈n| we have as
flux gain and flux loss at n, respectively,

Igain
nm (n) := −iPnHPm ; I loss

nm (n) := −iPmHPn . (4)

The total flux at n by gain and loss with m is given as

Inm(n) = −i (PnHPm − PmHPn) . (5)

On average with density matrix ρ we have

Inm(n) := 〈Inm(n)〉 = −i (Hnmρmn − ρnmHmn) (6)

and reproduce von Neumann for total flux at n on average

∂t 〈Pn〉 = ρ̇nn =
∑

m6=n

Inm(n) = −i
∑

m6=n

(Hnmρmn − ρnmHmn) .

(7)



II2. Bohmian Mechanics for Discrete Variables
Now, a deterministic hydrodynamic representation could be
reconstructed as follows

1. Solve for ρt and calculate Inm(t).

2. Solve the initial value problem for relative frequency hn(t)

hn(t) = hn(t0) +

∫ t

t0

dt′
∑

m6=n

Inm(t′) , (8)

and distribute initial values according to

〈hn(t0)〉 = pn(t0) = ρnn(t0) . (9)

3. The determined relative frequencies hn(t) will be identical on
average with the time dependent probability of the quantum
process and form a deterministic representation of that
process. This is also true for relativistic quantum field theories.

However, as you may have noticed, hn(t) is a smooth real valued

function, even if you start with hn(t0) ∈ {0, 1} and therefore
cannot reproduce rational values like 0, 1 at later times t.



II.3 Critics on Hydrodynamic Deterministic Representations

The hydrodynamic deterministic representation is a

representation in hindsight, where you first have to solve for the
time dependent quantum state under realistic boundary conditions,
taking all relevant influences into account. In a second step you
can calculate the integral curves of the resulting flux. One would
rather like to find a deterministic representation that is prior to an
averaging process and finally, after averaging, yields the quantum
mechanical time dependent probabilities.
Furthermore, in the discrete variable case, the hydrodynamic

deterministic representation does not work at all. The
velocity/flux field can take any real value but the discrete numbers
must change by discrete differences in a given time step. Thus, the
velocity/flux field does not lead in a unique deterministic way to
the discrete quantities in the next time step. The general problem
with a hydrodynamical deterministic representation is that
probability flux is smooth and no individual discrete process

can fit that.



III.1 From Permutation Dynamics To Markov Processes
The easiest way to go from dynamics of facts to dynamics of
prognosticating relative frequencies, which just is dynamics of
probabilities, is by averaging facts over probability distributions p.
For Markov processes we take the vector notation of permutation
dynamics on facts (see Chaps. 2,4),

φ
[π(k)]
t+1 = T

[π]
1 φ

[k]
t ; pm =

(

φ[m] | p
)

. (10)

Thus, averaging fact dynamics over distribution p can, by
transposing the action of T on facts to an action of T T on the
distribution, written like a Markov chain equation:

pt+1 = T [π−1]pt , (11)

where T [π−1] ∈ SN . Such permutation matrices are very special
stochastic matrices and so (11) only reproduces a very limited and
seemingly unrealistic stochastic Markov dynamics. In particular it
is reversible and amounts to just relabeling the indices of pn.



III.2 Averaging over Dynamics

Now comes a crucial point. Stochastic irreversible motions come
from a loss of resolution of dynamics of many, thus irrelevant,
variables. It amounts to averaging over different dynamics and
reduction to relevant variables. So, let us first average permutation
matrices over some distribution. Each matrix element of a
permutation matrix is in {0, 1} and on averaging over a probability
distribution each matrix element will become a non-negative real
number in the interval [0; 1] and the averaged matrix fulfills

∑

n

Tnm =
∑

m

Tnm = 1 ; Tmn ∈ [0; 1] , (12)

which means - as is known in the literature as the
Birkhoff-von-Neumann-theorem - that on averaging permutation
matrices a general double stochastic matrix T results. It is also
known that the corresponding Markov process has the unique

uniform stationary state pn = 1/N .



III.3 Reduction to relevant variables

Now, reducing to relevant variables n = 1, . . . M , M ≪ N , leaving
the transition rates between relevant states untouched leads to a
reduced matrix

T̃nm =
Tnm

∑M
n=1 Tnm

(13)

in order to keep the probability conserved on the relevant variables.
Now it is easy to check, that the matrix T̃ is still stochastic but
typically not also double stochastic. Thus we conclude:
Averaging over some distribution of permutation dynamics and
reducing to a number of relevant variables leads to a dynamics
with some generic stochastic matrix.
Thus, Markov processes in general can be viewed as an

average over a distribution of permutation dynamics with

reduction to a reduced set of relevant variables.



IV.1 From Permutation Dynamics To Quantum Processes:

Averaging over initial State

For quantum processes we take the matrix notation of permutation
dynamics on facts (see Chaps. 2,4),

P
[π(m)]
t+1 = T

[π]
1 P

[k]
t

(

T
[π]
1

)†
; pm =

(

P [m] | ρ
)

; ρ =
∑

m pmPm .

(14)
Averaging the facts over some distribution ρ0 at a fixed

initial time t0 and on taking the adjoint time evolution in the
scalar product of expectation values one can then rewrite the
dynamic as a unitary time evolution for the density operator

ρt =
(

T
[π−1]
1

)t

ρ0

(

(

T
[π−1]
1

)†
)t

. (15)

which is the quantum process time evolution, however

restricting the unitary matrices to only permutation matrices.



IV.2 From Permutation Dynamics To Quantum Processes:

Unknown Basis
Now comes a crucial point. We know from non-abelian symmetry
groups and Fourier analysis that incompatible, but

complementary properties of real life can be mathematically
described by projection operators, P I , P II , that do not commute

and have scalar products,
(

P I |P II
)

neither 1 nor 0.

[

P I , P II
]

6= 0 (16)

but are related by some unitary matrix U0 such that
[

P I , U0P IIU †
0

]

= 0 . (17)

Such U †
0 can be viewed as a transformation to the appropriate

basis of facts corresponding to the actual properties which are
either true or false. Unfortunately, often we do not know this

appropriate basis. Therefore, for the time evolution of the density
operator we may have to change to such initial basis and find...



IV.2 From Permutation Dynamics To Quantum Processes:

Unknown Basis

U0ρtU
†
0 =

(

T
[π−1]
1

)t

U0ρ0U †
0

(

(

T
[π−1]
1

)†
)t

. (18)

Since t is a discrete natural number we can plug left of each T1 a
factor of 1 = U0U †

0 and corresponding factors 1 = U †
0U0 to the

right of each factor T †
1 and find

U0ρtU
†
0 = U0U t

1ρ0

(

U †
1

)t
U †

0 , (19)

with a unitary matrix

U1 = U †
0T

[π−1]
1 U0 . (20)

Thus, we can conclude. A deterministic permutation dynamics for
some unknown properties with initial facts distributed according to
an initial density matrix ρ0 is described by a quantum dynamics
with one step time evolution operator U1.



IV. From Permutation Dynamics To Quantum Processes

We summarize our findings of this chapter:

◮ Hydrodynamic deterministic representations of stochastic
processes

◮ are often unrealistically smooth in Markov processes,
◮ hard to verify in continuous quantum processes due to

sensitivity of interference patterns,
◮ do not work at all for discrete variables, because of smooth

probability flux.

◮ Permutation dynamics are deterministic reversible dynamics.

◮ On averaging over a distribution of permutations the
reversibility is dynamically broken and by further reduction to
relevant variables a typical Markov process emerges for these
relevant variables. Every stochastic Markov process can

be represented by a deterministic permutation process.

The averaging is over different permutations and

incorporates reduction of variables.....



IV. From Permutation Dynamics To Quantum Processes

On averaging the initial facts within some unknown basis the

permutation dynamics turns into a typical quantum process

which stays reversible for closed systems. Every quantum

process can be represented by a deterministic permutation

process. The averaging is over initial facts in some unknown

basis.

U1 = U0T π−1

1 U †
0 (21)

T
[π]
1 is the one-step generator of permutations with π.

U0 rotates from a chosen basis to the appropriate fact basis which
usually is unknown.
U1 is the resulting one-step unitary quantum process generator.



06. Exercises

1. Show that integral curves of flux with initial values distributed
according to Pt0

(x) (3) are a deterministic representation of the
stochastic process.

2. Verify (6) and (7).

3. Construct a simple example for a process of discrete variables where
the deterministic representation of (8) is in conflict with the discrete
nature of variables. A two value system suffices.

4. Check that matrices T̃ of (13) are stochastic but usually no more
double stochastic.

5. Show (19) from (18) with the definition of (20).
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