Exercise 3

We define a family of 2-qubit states $|\psi(\alpha)\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ for $\alpha \in \mathbb{R}$ with $\frac{1}{2} \leq \alpha \leq 1$ as

$$
\begin{equation*}
|\psi(\alpha)\rangle=\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}|00\rangle+\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}|11\rangle+\left(\frac{1-\alpha}{2}\right)^{\frac{1}{2}}|01\rangle+\left(\frac{1-\alpha}{2}\right)^{\frac{1}{2}}|10\rangle \tag{1}
\end{equation*}
$$

a) You measure the first qubit. What is the probability of finding the measurement outcome that corresponds to the $|0\rangle$ state for the first qubit?
b) If you indeed find this measurement outcome, what is the post-measurement state?
c) Show that $|\psi(\alpha)\rangle$ is entangled for all values of α, except $\alpha=\frac{1}{2}$. You are allowed to assume that all amplitudes are real.
Hint 1: Assume that $|\psi(\alpha)\rangle$ is a product state and work towards a contradiction for values other than $\alpha=\frac{1}{2}$.
Hint 2: Another option is to look at the Schmidt rank of the reduced density matrix $\rho_{A}=\operatorname{Tr}_{B}(|\psi(\alpha)\rangle\langle\psi(\alpha)|)$.
Hint 3: A third way is by looking at $\operatorname{Tr}\left(\rho_{A}^{2}\right)$. If this is your preferred way, also explain why this is sufficient.

Solution

a) Let l be the measurement outcome corresponding to the $|0\rangle$ state of the first qubit.

$$
\begin{aligned}
P(l) & =\langle\psi(\alpha)| P_{0} \otimes \mathbb{I}|\psi(\alpha)\rangle=\sum_{x}\langle\psi(\alpha)||0 x\rangle\langle 0 x||\psi(\alpha)\rangle \\
& =\langle\psi(\alpha)||00\rangle\langle 00||\psi(\alpha)\rangle+\langle\psi(\alpha)||01\rangle\langle 01||\psi(\alpha)\rangle \\
& =\frac{\alpha}{2}+\frac{1-\alpha}{2}=\frac{1}{2}
\end{aligned}
$$

b) To practice the new density matrix formalism, let's do this calculation using $\rho=$ $|\psi(\alpha)\rangle\langle\psi(\alpha)|$ and the measurement rules from exercise 0 . The post-measurement state is

$$
\begin{aligned}
\rho^{\prime} & =\left(p(00)+p(01) \frac{\left(P_{00}+P_{01}\right)|\psi(\alpha)\rangle\langle\psi(\alpha)|\left(P_{00}+P_{01}\right)}{\operatorname{Tr}\left(\left(P_{00}+P_{01}\right)|\psi(\alpha)\rangle\langle\psi(\alpha)|\right)}\right. \\
& =\alpha|00\rangle\langle 00|+(1-\alpha)|01\rangle\langle 01|+\sqrt{\alpha(1-\alpha)}(|00\rangle\langle 01|+|01\rangle\langle 00|) .
\end{aligned}
$$

c) There are three (or possibly even more) ways of solving this exercise.

Option 1: Assume $|\psi(\alpha)\rangle$ is a product state of 2 qubits. Then it should be possible to write

$$
|\psi(\alpha)\rangle=(a|0\rangle+b|1\rangle) \otimes(c|0\rangle+d|1\rangle),
$$

for $|a|^{2}+|b|^{2}=|c|^{2}+|d|^{2}=1$. Multiplying out, we get

$$
|\psi(\alpha)\rangle=a c|00\rangle+a d|01\rangle+b c|10\rangle+b d|11\rangle
$$

So we have $a c=b d=\sqrt{\frac{\alpha}{2}}$ and $a d=b c=\sqrt{\frac{1-\alpha}{2}}$. Substituting $a=b d / c$ into $a d=b c$ we arrive at the conclusion that $c= \pm d$. Similarly, we can derive that $a= \pm b$. Using the normalisation, the only (real) solutions are $a= \pm \frac{1}{\sqrt{2}}$ and the same for b, c, d. I.e. the only valid value for α in the given range is $\alpha=\frac{1}{2}$.

Option 2: Calculate the reduced density matrix ρ_{A} and determine its rank. This is the Schmidt number of $\psi(\alpha)$.

$$
\begin{aligned}
\rho_{A} & =\operatorname{Tr}_{B}(|\psi(\alpha)\rangle\langle\psi(\alpha)|)=\sum_{i}(\mathbb{I} \otimes\langle i|)|\psi(\alpha)\rangle\langle\psi(\alpha)|(\mathbb{I} \otimes|i\rangle) \\
& =\ldots=\frac{1}{2}|0\rangle\langle 0|+\frac{1}{2}|1\rangle\langle 1|+\frac{1}{2} \sqrt{\alpha(1-\alpha)}(|0\rangle\langle 1|+|1\rangle\langle 0|) \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & \sqrt{\alpha(1-\alpha)} \\
\sqrt{\alpha(1-\alpha)} & 1
\end{array}\right)
\end{aligned}
$$

This matrix is a rank 1 matrix if and only if $\alpha=\frac{1}{2}$ if α is restricted to the reals. If the Schmidt rank is larger than 1 , the state is entangled.
Option 3: Again looking at ρ_{A}, calculate

$$
\begin{aligned}
\operatorname{Tr}\left(\rho_{A}^{2}\right) & =\operatorname{Tr}\left(\begin{array}{cc}
\frac{1}{4}\left(\begin{array}{cc}
1+4 \alpha(1-\alpha) & \ldots \\
\cdots & 1+4 \alpha(1-\alpha)
\end{array}\right)
\end{array}\right) \\
& =\frac{1}{4} \cdot 2 \cdot(1+4 \alpha(1-\alpha))=\frac{1}{2}+2 \alpha(1-\alpha)
\end{aligned}
$$

This equals 1 if and only if $\alpha=\frac{1}{2}$. This is a sufficient condition, because it means that ρ_{A} is pure and pure states can't be entangled with other systems. Conversely, every mixed state is entangled with its purification.

