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4. Purifications (solution) 6 points

We start from the Schmidt decomposition of the states

|Ψ1〉 =
∑
i

λi |ai〉 |bi〉 ,

|Ψ2〉 =
∑
i

λ′i
∣∣a′i〉 ∣∣b′i〉 ,

where {|ai〉}, {|a′i〉 are orthonormal sets of states in A, and similarly {|bi〉}, {|b′i〉 are orthonormal
sets in B. We assume that the Schmidt spetrum is non-degenerate (i.e., λi 6= λi′ for i 6= i′). Taking
the partial trace,

ρA = trB |Ψ1〉〈Ψ1| =
∑
i

λi |ai〉〈ai| = trB |Ψ2〉〈Ψ2| =
∑
i

λ′i
∣∣a′i〉〈a′i∣∣ .

Because ρA has a non-degenerate spectrum, this equation gives the unique diagonalization of that
matrix. In particular, λi = λ′i and |ai〉〈ai| = |a′i〉〈a′i| (and thus |a′i〉 = eiαi |ai〉). Let |ci〉 := eiαi |b′i〉—
notice that the set {|ci〉} is also orthonormal in B. Then,

|Ψ1〉 =
∑
i

λi |ai〉 |bi〉 ,

|Ψ2〉 =
∑
i

λi |ai〉 |ci〉 .

Finally, complete the sets {|bi〉} and {|ci〉} to two orthonormal bases of B. Then the linear map UB
on B defined by the relations UB |ci〉 = |bi〉 is unitary:

〈ci|U †BUB |cj〉 = δij =⇒ U †BUB = 1.

Finally, by construction Ψ1 = (1⊗ UB)Ψ2.

5. Measurements on the other systems don’t matter (solution) 6
points

Following the hint: we may expand OAB as a sum of product operators

OAB =
∑
i

O
(i)
A ⊗O

(i)
B .
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Then

trB(1A ⊗B)OAB =
∑
i

trB

(
(1A ⊗B)(O

(i)
A ⊗O

(i)
B )
)

=
∑
i

O
(i)
A tr

(
BO

(i)
B

)
=
∑
i

O
(i)
A tr

(
O

(i)
B B

)
=
∑
i

trB

(
(O

(i)
A ⊗O

(i)
B )(1A ⊗B)

)
= trB OAB(1A ⊗B)

It follows from this that

trB ρ
′
AB =

∑
l

trB(1A ⊗Ml)ρAB(1A ⊗M †l )

=
∑
l

trB ρAB(1A ⊗M †lMl)

= trB ρAB,

where the last equality follows from ∑
l

M †lMl = 1B.

6. Equivalent circuits (solution) 6 points

Equivalence of the controlled Z: one may directly verify that they act in the same way on the
computational basis,

|00〉 7→ |00〉 , |01〉 7→ |01〉 , |10〉 7→ |10〉 , |11〉 7→ − |11〉 .

On the CNOT circuits: Recall that H2 = 1. We will show the equivalent statement

(H ⊗H)CNOT21 = CNOT12(H ⊗H).

Consider any computational basis element |a, b〉. Then, a short calculation shows that

(H ⊗H) |a, b〉 =
1

2

∑
a′,b′

(−1)a
′a+b′b

∣∣a′, b′〉 ,
and

CNOT12 |a, b〉 = |a, a+ b mod 2〉 , CNOT21 |a, b〉 = |a+ b mod 2, b〉 .

Throughout the rest of the proof we simply write a+ b to denote a+ b mod 2.
This way, on the one hand,

(H ⊗H)CNOT21 |a, b〉 = (H ⊗H) |a+ b, b〉

=
1

2

∑
a′,b′

(−1)a
′(a+b)+b′b

∣∣a′, b′〉 .
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On the other hand,

CNOT12(H ⊗H) |a, b〉 =
1

2

∑
a′,b′

(−1)a
′a+b′bCNOT12

∣∣a′, b′〉 (1)

=
1

2

∑
a′,b′

(−1)a
′a+b′b

∣∣a′, a′ + b′
〉
. (2)

Relabelling the variables in the last sum: c′ := a′ and d′ := a′ + b′, so b′ = d′ + a′, we obtain

1

2

∑
c′,d′

(−1)c
′a+(d′+c′)b

∣∣c′, d′〉 =
1

2

∑
c′,d′

(−1)c
′(a+b)+d′b

∣∣c′, d′〉 (3)

we see that (2) and (3) are the same state. Since this holds for arbitrary a, b, this implies the two
unitary operators are equal.

7. Classical and quantum CCNOT (solution) 2+2+2+0=6 points

a) Using the hint: it is sufficient to show how to implement the NAND and BRANCH gates using
CCNOTs. Consider a CCNOT controlling on the first two bits and acting on the third one:

CCNOT (a, b, c) =

{
(a, b, c), if a or b 6= 1,

(a, b, c+ 1), if a, b = 1,

where, as before c+1 := c+1 mod 2. We may rewrite this action as CCNOT (a, b, c) = (a, b, c+ab).
Then, CCNOT (a, b, 1) = (a, b, 1 + AND(a, b)) = (a, b,NAND(a, b)), thus the outcome of the
NAND gate is obtained in the third bit. Similarly, CCNOT (a, 1, 0) = (a, 1, AND(a, 1)) = (a, 1, a),
so the first and third bits contain the output of BRANCH(a).

b) Acting on a computational basis state |a, b, c〉 with the circuit on the right,

CV13CX12CV
†
23CX12CV23 |a, b, c〉 = CV13CX12CV

†
23CX12 |a〉 |b〉 (V b |c〉)

= CV13CX12CV
†
23 |a〉 |a+ b〉 (V b |c〉)

= CV13CX12 |a〉 |a+ b〉 ((V †)a+bV b |c〉)
= CV13 |a〉 |b〉 ((V †)a+bV b |c〉)
= |a〉 |b〉 (V a(V †)a+bV b |c〉),

where, remember, I’ve used the short notation a+ b := a+ b mod 2 ∈ {0, 1}. If a or b 6= 1, then the
factors of V and V † cancel out in the equation above: for example if a = 0 and b = 1, it holds that
V a(V †)a+bV b = V 0(V †)1V 1 = V †V = 1. This holds similarly for the other cases. If a, b = 1, then
a+ b = 0 so that (V †)a+b = (V †)0 = 1. Thus, in this case the factors on the third qubit combine to

V a(V †)a+bV b = V 1V = V 2 = U.

In summary, we have that, denoting by C the circuit on the right-hand side of the claimed equation,

C |a, b, c〉 =

{
|a, b, c〉 if a or b 6= 1,

(1⊗ 1⊗ U) |1, 1, c〉
= CU |a, b, c〉 ,

for all a, b, c. Thus the two operators are equal.
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c) It is sufficient to find a V such that V 2 = X and substitute it in the circuit above. We may express
the matrix X = |+〉〈+| − |−〉〈−| in its diagonalized form. Then, the matrix V = |+〉〈+| + i |−〉〈−|
satisfies V 2 = X.

d) By c), using two-qubit quantum gates we may implement the CCNOT gate. Moreover, by a),
any classical circuit (decomposed into NAND and BRANCH gates) may be performed using CCNOT
gates and using a number of additional bits which is at most twice the (NAND,BRANCH)-circuit
length. This implies that any finite (NAND,BRANCH)-circuit may be substituted by an equivalent
finite CCNOT-circuit.
Encoding bitstrings (a, b, c, . . . ) as their corresponding computational basis element |a, b, c, . . .〉 on
the quantum computer, we may perform the classical circuit on the quantum computer. The outcome
of the quantum circuit will be the encoding of the outcome of the classical circuit. Finally, measuring
the computational basis at the end of the circuit will deterministically (i.e., with probability = 1)
produce the outcome of the classical circuit (this follows because the outcome of a quantum circuit
that only uses CCNOT gates is a computational basis state).

8. Circuit for an ideal measurement (solution) 6 points

At the different stages of the circuit, the state of the system is:

|ψ1〉 := (H |0〉) |ψ〉 =
1√
2

(|0〉+ |1〉) |ψ〉

|ψ2〉 :=
1√
2

(|0〉 |ψ〉+ |1〉U |ψ〉

|ψ3〉 :=
1

2
(|0〉 |ψ〉+ |1〉 |ψ〉+ |0〉U |ψ〉 − |1〉U |ψ〉)

=
1

2
(|0〉 (1 + U) |ψ〉+ |1〉 (1− U) |ψ〉),

here, |ψ3〉 is the state right before the measurement. Upon measuring the computational basis on the
first qubit, the following happens: if the outcome is “0,” then the post-measurement state is

|φ+〉 := c+(1 + U) |ψ〉 ,

where c+ ∈ R+ is a normalization constant. If, instead, the outcome is “1,” the post-measurement
state is

|φ−〉 := c−(1− U) |ψ〉 .

Finally U |φ±〉 = c±(U ± U2) |ψ〉 = c±(U ± 1) |ψ〉 = ± |φ±〉.
Added notes: we may diagonalize the operator U . By doing so, it becomes clear that 1

2(1 + U)
projects onto the “+” eigenspace of U , and similarly 1

2(1−U) onto the “-” eigenspace. This provides
an alternative proof of the last statement.
Finally, let’s look at the probability of each outcome:

p0 = tr((|0〉〈0| ⊗ 1)(|ψ3〉〈ψ3|)) = 〈ψ| 1
2

(1 + U) |ψ〉 ,

p1 = tr((|1〉〈1| ⊗ 1)(|ψ3〉〈ψ3|)) = 〈ψ| 1
2

(1− U) |ψ〉 .

We can see that what the circuit is doing is literally measuring U on the state |ψ〉. Indeed, the
probabilities of each outcome are given by the Born-rule probabilities obtained by measuring U , and
the post-measurement state is given exactly as if we would have measured U directly on |ψ〉. If it
barks like a U measurement, and looks like a U measurement, and wags its tail like a U measurement,
it is a U measurement.
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