Quantum Information Theory - Sheet 1

Wintersemester 2021/22

Webpage: http://www.thp.uni-koeln.de/~rk/qit_22.html/
Submission of solutions as pdf-file until Thursday, April 21, 12 pm, to ligthart.exams[at]gmail.com
Joint solutions of teams with up to three members are allowed, welcomed, and highly recommended!

0. Measurement

a) We consider an ideal measurement of the observable $A=\sum_{l=1}^{N} a_{l} P_{l}$ (a_{l} are the eigenvalues of A, P_{l} the projections on the eigenspaces) of a quantum system, which initially is in a general state ρ. Show that, if the measurement outcome is not known, the state of the system immediately after the measurement is

$$
\rho^{\prime}=\sum_{l=1}^{N} P_{l} \rho P_{l}
$$

b) Now we consider a non-ideal measurement, in which an outcome a_{l} triggers a unitary transformation V_{l} of the system's state. Again, assume the measurement outcome is not known and show that in this case the final state is

$$
\rho^{\prime}=\sum_{l=1}^{N} M_{l} \rho M_{l}^{+}
$$

where $M_{l}=V_{l} P_{l}$. Verify

$$
\sum_{l=1}^{N} M_{l}^{+} M_{l}=1, \quad p_{l}=\operatorname{Tr}\left(M_{l}^{+} M_{l} \rho\right)
$$

where p_{l} is the probability of measurement outcome a_{l}.
c) Specifically, we consider a non-ideal spin-z measurement

$$
\sigma_{z}=|\uparrow\rangle\langle\uparrow|-|\downarrow\rangle\langle\downarrow|=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

on a spin- $1 / 2$ particle. In this measurement the outcome " \downarrow " triggers

$$
\sigma_{x}=|\downarrow\rangle\langle\uparrow|+|\uparrow\rangle\langle\downarrow|=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

while the outcome " \uparrow " leaves the system unchanged. What is the final state ρ^{\prime} on measuring a general initial state ρ ?

1. A criterion for purity

Let ρ be a density operator. Show that $\operatorname{Tr}\left(\rho^{2}\right) \leq 1$, with equality if and only if ρ is a pure state.

2. Blochsphere

Let ρ be the density operator of a general qubit state. The operator ρ represented as 2×2 matrix w.r.t. to the orthonormal system $\{|0\rangle,|1\rangle\}$ then defines the density matrix $\hat{\rho}$ of that state.
a) Show that $\hat{\rho}$ can be written as

$$
\hat{\rho}=\frac{1}{2}(\mathbf{1}+\vec{r} \cdot \vec{\sigma}),
$$

where the Bloch vector \vec{r} is a real three-dimensional vector such that $|\vec{r}| \leq 1 . \vec{\sigma}=\left(\sigma_{2}, \sigma_{2}, \sigma_{3}\right)$ denote the standard Pauli matrices.
b) What are the Bloch vectors corresponding to pure qubit states $|0\rangle,|1\rangle, \frac{|0\rangle+|1\rangle}{\sqrt{2}}$ and $\frac{|0\rangle+i|1\rangle}{\sqrt{2}}$?

What is the Bloch vector representing the state $\rho=\frac{1}{2} \mathbf{1}$?
c) Show that ρ is pure if and only if $|\vec{r}|=1$. Hint: Problem 1 .

3. Entanglement

We define a family of 2-qubit states $|\psi(\alpha)\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ for $\alpha \in \mathbb{R}$ with $\frac{1}{2} \leq \alpha \leq 1$ as

$$
|\psi(\alpha)\rangle=\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}|00\rangle+\left(\frac{\alpha}{2}\right)^{\frac{1}{2}}|11\rangle+\left(\frac{1-\alpha}{2}\right)^{\frac{1}{2}}|01\rangle+\left(\frac{1-\alpha}{2}\right)^{\frac{1}{2}}|10\rangle
$$

a) You measure the first qubit. What is the probability of finding the measurement outcome that corresponds to the $|0\rangle$ state for the first qubit?
b) If you indeed find this measurement outcome, what is the post-measurement state?
c) Show that $|\psi(\alpha)\rangle$ is entangled for all values of α, except $\alpha=\frac{1}{2}$. You are allowed to assume that all amplitudes are real.
Hint 1: Assume that $|\psi(\alpha)\rangle$ is a product state and work towards a contradiction for values other than $\alpha=\frac{1}{2}$.
Hint 2: Another option is to look at the Schmidt rank of $|\psi(\alpha)\rangle$.
Hint 3: A third way is by looking at $\operatorname{Tr}\left(\rho_{A}^{2}\right)$. If this is your preferred way, also explain why this is sufficient.

