Quantum Information Theory - Sheet 3

Wintersemester 2021/22
Webpage: http://www.thp.uni-koeln.de/~rk/qit_22.html/
Submission of solutions as pdf-file until Thursday, May 19, 12 pm, to ligthart.exams[at]gmail.com

9. Random vectors of $s^{\perp} \subset \mathbb{Z}_{2}^{n}$

In the end, Simon's algorithm produces a set of random vectors l_{1}, \ldots, l_{K} of the $(n-1)$ - dimensional linear subspace $V=s^{\perp}$ of \mathbb{Z}_{2}^{n}. Here we want to convince ourself that the vectors $l_{1}, \ldots l_{K}$ span with high probability the entire subspace V, provided that K is significantly larger than n but still of order $O(n)$. To this end show the following:
a) If $l_{1}, \ldots, l_{k} \in V$ span a subspace $W \varsubsetneqq V$, adding another random vector l_{k+1} of V, the vectors $l_{1}, \ldots, l_{k}, l_{k+1}$ span with probability $p \geq \frac{1}{2}$ a subspace W^{\prime} of increased dimension $\operatorname{dim} W^{\prime}=\operatorname{dim} W+1$.
b) Assuming that the probability in a) would be exactly $p=\frac{1}{2}$, show that K random vectors of V span a subspace of dimension $d<n-1$ with probability

$$
\frac{1}{2^{K}}\binom{K}{d}
$$

c) Argue by the result of \mathbf{b}) that for $K=4 n(\gg 1)$ random vectors l_{1}, \ldots, l_{K} of V fail to span the entire space V with a probability much less than $e^{-n / 2}$.

Hint: approximate the binomial distribution by a normal distribution

10. Quantum Fourier Transformation

The discrete Fourier transformation over \mathbb{Z}_{N} with $N=2^{n}$ can be implemented as a unitary transformation F_{n} on n qubits, given by

$$
F_{n}|x\rangle:=\frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \mathrm{e}^{\frac{2 \pi i}{N} x k}|k\rangle
$$

a) Show by an explicit calculation that F_{n} is unitary.
b) Design a quantum circuit for the inverse discrete Fourier transformation.

11. Fourier Transformation of an r-periodic function $2+6+2+2$ Punkte

Let a function $f: \mathbb{Z}_{N} \rightarrow \mathbb{C}$ be given by

$$
f(x)=\sqrt{\frac{r}{N}} \times\left\{\begin{array}{llll}
1 & : & x+l=0 & \bmod r \\
0 & : & x+l \neq 0 & \bmod r
\end{array}\right.
$$

where N is a positive integer, r a positive integer that divides N, and l a positver integer less than r.
a) Draw the graph of f for $N=24, r=6$ and $l=2$.
b) Compute the discrete Fourier transform

$$
\hat{f}(k)=\frac{1}{\sqrt{N}} \sum_{x=0}^{N-1} f(x) \mathrm{e}^{\frac{2 \pi i}{N} x k}
$$

of f.
c) Draw the graph of $|\hat{f}|$ for $N=24, r=6$ and $l=2$.
d) What are the Fourier transforms of the constant function $f(x)=1 / \sqrt{N}$ and the alternating function g with $g(x)=\sqrt{\frac{2}{N}}$ for even x and $g(x)=0$ for odd x ?

