Quantum Information Theory - Sheet 4

Wintersemester 2021/22

Webpage: http://www.thp.uni-koeln.de/~rk/qit_22.htmI/
Submission of solutions as pdf-file until Thursday, June 2, 12 pm , to ligthart.exams[at]gmail.com

12. RSA-decoding

$1+1+4=6$ points
An RSA-encrypted message E can be easily decoded when one knows its order r modulo n, where n together with an integer e co-prime to $\varphi(n)$ constitutes the public key (e, n). The original message M (co-prime to n), encoded as $E=M^{e} \bmod n$, can then be decoded from E by

$$
M=E^{d^{\prime}} \quad \bmod n,
$$

where d^{\prime} is the inverse of e modulo r. In the lecture this was shown by using the following fact:
For e co-prime $\varphi(n)$ and x co-prime n, the order of x^{e} modulo n equals the order of x modulo n In order to prove this first show:
a) Any m satisfying $x^{m}=1 \bmod n$ is an integer multiple of the order of x modulo n.
b) For x co-prime n, the order of x modulo n divides $\varphi(n)$
then, building on \mathbf{a}) and \mathbf{b}), eventually show:
c) For e co-prime $\varphi(n)$ and x co-prime n, the order r of x^{e} modulo n equals the order \tilde{r} of x modulo n.

Hints: $\varphi(n)$ denotes Euler's φ-function; \mathbf{a}): proof by contradiction; \mathbf{b}): use Euler's theorem.

13. Grover's algorithm

Show that if the number of solutions is $t=N / 4$, then Grover's algorithm always finds a solution with certainty after just one query. How many queries would a classical algorithm need to find a solution with certainty if $t=N / 4$? And if we allow the classical algorithm an error probability of $1 / 10$?

14. Searching for the nimimum

6 points
N numbers $x_{1}, x_{2}, \ldots, x_{N}$ are stored in an unsorted manner in a quantum data base. Give a quantum algorithm that finds the smallest element x_{i} within an expected number of $O(\sqrt{N})$ data base queries. How many queries would need your algorithm in the worst case?
Hint: Assume that a Grover-like search on the data base can be performed and that this search finds one of t items within N unsortet elements with an expected number of $O\left(\sqrt{\frac{N}{t}}\right)$ queries, and this also when the number t is unknown.

15. Turing machines and the Halting-function

a) What is the effect of the following Turing machine on a general binary input word x ?

$$
\begin{equation*}
M=\left(\left\{s_{0}, s_{1}, s_{2}, s_{e}\right\},\{0,1\},\{0,1, \square\}, \delta, s_{0}, \square,\left\{s_{e}\right\}\right) \tag{1}
\end{equation*}
$$

with transition function

$$
\begin{aligned}
& \delta: s_{0}, 0 \rightarrow s_{0}, 0, R \\
& s_{0}, 1 \quad \rightarrow \quad s_{0}, 1, R \\
& s_{0}, \square \quad \rightarrow \quad s_{1}, 1, R \\
& s_{1}, \square \rightarrow s_{2}, 1, L \\
& s_{2}, 0 \rightarrow s_{2}, 0, L \\
& s_{2}, 1 \rightarrow s_{2}, 1, L \\
& s_{2}, \square \rightarrow s_{e}, \square, R
\end{aligned}
$$

b) Design a Turing machine that computes $f(x)=x \bmod 2$.
c) The incomputability of the Halting-function

$$
h(w)= \begin{cases}1 & \text { Turing machine } M_{w} \text { holds on input } w \\ 0 & \text { Turing machine } M_{w} \text { does not hold on input } w\end{cases}
$$

can be proven by contradiction. To this end it is assumed that a Turing machine M exists that on any input w holds after some finite time with output $h(w)$, i.e.

$$
s_{0} w \vdash^{*} s_{e} h(w),
$$

where s_{0} and s_{e} are initial and final states of M. In the proof this machine M needs to be modified into a Turing machine M^{\prime} with the property that on input w

1. M^{\prime} holds (e.g. with output 0) when M on input w would output 0 (i.e. $h(w)=0$)
2. M^{\prime} will never hold when M on input w would output 1 (i.e. $h(w)=1$)

Explicitly construct M^{\prime} starting from the machine M. To be specific assume that M has internal sates $s_{0}, \ldots s_{n}, s_{e}$, binary alphabet $\Sigma=\{0,1\}$, working alphabet $\Gamma=\{0,1, \square\}$ and transition rules δ. Add internal states and correspondingly extend the transition rules such that the result is the machine M^{\prime} with the above properties.

