Quantum Information Theory - Sheet 5

Wintersemester 2021/22

Webpage: http://www.thp.uni-koeln.de/~rk/qit 22.html/

Submission of solutions as pdf-file until Thursday, June 30, 12 pm, to *ligthart.exams[at]gmail.com*

16. Commutator

The Solovay-Kitaev theorem for efficient unitary approximation uses following relation for rotations on the Bloch-sphere:

$$\mathcal{R}_{3,\varepsilon}^{-1} \mathcal{R}_{1,\varepsilon}^{-1} \mathcal{R}_{3,\varepsilon} \mathcal{R}_{1,\varepsilon} = \mathcal{R}_{2,-\varepsilon^2} + \mathcal{O}(\varepsilon^3),$$

where $R_{l,lpha}={
m e}^{ilpha\sigma_l}$. Verify this relation and give a geometrical interpretation of it.

17. Depolarizing channel

a) A quantum operation $\mathcal E$ on a qubit is given by

$$\mathcal{E}(\rho) = \frac{1}{4} \left(\rho + X \rho X + Y \rho Y + Z \rho Z \right).$$

Show that

$$\mathcal{E}(I)=I, \quad ext{and} \quad \mathcal{E}(X)=\mathcal{E}(Y)=\mathcal{E}(Z)=0 \ .$$

- b) Use the Bloch-vector representation of a general qubit state ρ in order to show that the operation \mathcal{E} defined in a) satisfies $\mathcal{E}(\rho) = \frac{1}{2}I$.
- c) The depolarizing qubit channel is described by the map

$$\mathcal{E}_p(\rho) = (1-p)\rho + p \frac{I}{2},\tag{1}$$

where $p \in [0,1]$. Show that \mathcal{E}_p can be written in the form

$$\mathcal{E}_p(\rho) = \left(1 - \frac{3}{4}p\right)\rho + \frac{p}{4}\left(X\rho X + Y\rho Y + Z\rho Z\right) \,.$$

18. Kraus-operator expansion

a) Give Kraus-operator expansions for the following two quantum operations on a quantum system with Hilbert space \mathcal{H} of dimension d:

$$\mathcal{E}_1(\rho) = |\psi\rangle\langle\psi|, \quad (|\psi\rangle \in \mathcal{H}), \qquad \mathcal{E}_2(\rho) = \frac{1}{d} I.$$

4 points

2+2+2=6 points

b) Quantum operations \mathcal{E} and \mathcal{F} on a quantum system Q are given by Kraus operators E_1, \ldots, E_K and F_1, \ldots, F_L , respectively. Find Kraus-operator expansions for the quantum operations $\mathcal{E} \circ \mathcal{F}$ and $\mathcal{E} \otimes \mathcal{F}$. [The operation $\mathcal{E} \otimes \mathcal{F}$ on $Q \otimes Q$ is defined by $\mathcal{E} \otimes \mathcal{F}(\rho \otimes \sigma) = \mathcal{E}(\rho) \otimes \mathcal{F}(\sigma)$, and by linearity for general density operators.]

19. Number of Kraus-operators

10 points

The Kraus-operators $E_1, \ldots E_K$ of a quantum operation \mathcal{E} on a quantum system Q can be transformed to an equivalent set of Kraus-operators $F_1, \ldots F_K$ by a unitary matrix $U = (u_{lk})$,

$$F_l = \sum_k u_{lk} E_k \,.$$

Use this fact in order to show that one can expand \mathcal{E} with at most d^2 Kraus-operators, where d is the dimension of the Hilbert space \mathcal{H}_Q .

[Hints: Show that the matrix $W := (\operatorname{Tr} E_i^+ E_j)_{ij}$ is hermitian and of rank $\leq d^2$, and thus can be unitarily transformed to a diagonal matrix $\tilde{W} = UWU^+$ with at most d^2 non-vanishing eigenvalues. Use U to transform from $\{E_k\}$ to operators $\{F_l\}$ satisfying $\operatorname{Tr} F_l^+ F_m = \tilde{W}_{lm}$.]