Quantum Information Theory - Sheet 5

Wintersemester 2021/22
Webpage: http://www.thp.uni-koeln.de/~rk/qit_22.html/
Submission of solutions as pdf-file until Thursday, June $30,12 \mathrm{pm}$, to ligthart.exams[at]gmail.com

16. Commutator

4 points
The Solovay-Kitaev theorem for efficient unitary approximation uses following relation for rotations on the Bloch-sphere:

$$
\mathcal{R}_{3, \varepsilon}^{-1} \mathcal{R}_{1, \varepsilon}^{-1} \mathcal{R}_{3, \varepsilon} \mathcal{R}_{1, \varepsilon}=\mathcal{R}_{2,-\varepsilon^{2}}+\mathcal{O}\left(\varepsilon^{3}\right)
$$

where $R_{l, \alpha}=\mathrm{e}^{i \alpha \sigma_{l}}$. Verify this relation and give a geometrical interpretation of it.

17. Depolarizing channel

a) A quantum operation \mathcal{E} on a qubit is given by

$$
\mathcal{E}(\rho)=\frac{1}{4}(\rho+X \rho X+Y \rho Y+Z \rho Z) .
$$

Show that

$$
\mathcal{E}(I)=I, \quad \text { and } \quad \mathcal{E}(X)=\mathcal{E}(Y)=\mathcal{E}(Z)=0
$$

b) Use the Bloch-vector representation of a general qubit state ρ in order to show that the operation \mathcal{E} defined in a) satisfies $\mathcal{E}(\rho)=\frac{1}{2} I$.
c) The depolarizing qubit channel is described by the map

$$
\begin{equation*}
\mathcal{E}_{p}(\rho)=(1-p) \rho+p \frac{I}{2} \tag{1}
\end{equation*}
$$

where $p \in[0,1]$. Show that \mathcal{E}_{p} can be written in the form

$$
\mathcal{E}_{p}(\rho)=\left(1-\frac{3}{4} p\right) \rho+\frac{p}{4}(X \rho X+Y \rho Y+Z \rho Z)
$$

18. Kraus-operator expansion

a) Give Kraus-operator expansions for the following two quantum operations on a quantum system with Hilbert space \mathcal{H} of dimension d :

$$
\mathcal{E}_{1}(\rho)=|\psi\rangle\langle\psi|, \quad(|\psi\rangle \in \mathcal{H}), \quad \mathcal{E}_{2}(\rho)=\frac{1}{d} I .
$$

b) Quantum operations \mathcal{E} and \mathcal{F} on a quantum system Q are given by Kraus operators E_{1}, \ldots, E_{K} and $F_{1}, \ldots F_{L}$, respectively. Find Kraus-operator expansions for the quantum operations $\mathcal{E} \circ \mathcal{F}$ and $\mathcal{E} \otimes \mathcal{F}$.
[The operation $\mathcal{E} \otimes \mathcal{F}$ on $Q \otimes Q$ is defined by $\mathcal{E} \otimes \mathcal{F}(\rho \otimes \sigma)=\mathcal{E}(\rho) \otimes \mathcal{F}(\sigma)$, and by linearity for general density operators.]

19. Number of Kraus-operators

The Kraus-operators $E_{1}, \ldots E_{K}$ of a quantum operation \mathcal{E} on a quantum system Q can be transformed to an equivalent set of Kraus-operators $F_{1}, \ldots F_{K}$ by a unitary matrix $U=\left(u_{l k}\right)$,

$$
F_{l}=\sum_{k} u_{l k} E_{k}
$$

Use this fact in order to show that one can expand \mathcal{E} with at most d^{2} Kraus-operators, where d is the dimension of the Hilbert space \mathcal{H}_{Q}.
[Hints: Show that the matrix $W:=\left(\operatorname{Tr} E_{i}^{+} E_{j}\right)_{i j}$ is hermitian and of rank $\leq d^{2}$, and thus can be unitarily transformed to a diagonal matrix $\tilde{W}=U W U^{+}$with at most d^{2} non-vanishing eigenvalues. Use U to transform from $\left\{E_{k}\right\}$ to operators $\left\{F_{l}\right\}$ satisfying $\operatorname{Tr} F_{l}^{+} F_{m}=\tilde{W}_{l m}$.]

