Quantum Information Theory – Sheet 6

Wintersemester 2021/22

Webpage: http://www.thp.uni-koeln.de/~rk/qit_22.html/

Submission of solutions as pdf-file until Thursday, July 14, 12 pm, to *ligthart.exams[at]gmail.com*

20. cptp-map

Show that a quantum operation

$$\rho \mapsto \mathcal{E}(\rho) = \sum_{k=1}^{K} E_k \, \rho \, E_k^{\dagger}$$

with Kraus operators E_k satisfying $\sum_{k=1}^{K} E_k^{\dagger} E_k = 1$ is completely positive and trace preserving.

21. Shor's 1-9 Code

Use the error-correcting condition*

 $P E_k^{\dagger} E_{k'} P \propto P$

to show that Shor's 1-9 code^{**} also allows the correction of a single bit-flip X_j that appears *simultaneously* together with a single phase-flip Z_k . To this end you may check the above condition for the following set of error operators:

$${I_i, X_i, Z_i, X_j Z_k}_{i,j,k=1,\dots 9}$$
.

[* P is the projection onto the code space, $\{E_k\}$ are Kraus-operators of the noise.

** which encodes logical qubit states $|0\rangle$ and $|1\rangle$ into 9-qubit states $\left(\left.\left|0\right\rangle^{\otimes3}\pm\left|1\right\rangle^{\otimes3}\right.\right)^{\otimes3}/\sqrt{8}$.

22. Random unit vectors in n dimensions

Show that for large n an n-dimensional *random* unit vector is almost always almost orthogonal to any vector of a fixed orthogonal system.

5 Punkte

8 Punkte

5 Punkte