Quantenmechanik - Blatt 1

Wintersemester 2025/26

Webpage: https://www.thp.uni-koeln.de/~rk/qm25.html/

Abgabe: bis Sonntag, 26.10.25, 23:55 in elektronischer Form per ILIAS unter https:

//www.ilias.uni-koeln.de/ilias/goto_uk_crs_6459145.html

1. Zur Diskussion

0 Punkte

- a) Was ist ein komplexer Vektorraum?
- b) Was ist eine hermitesches Skalarprodukt?
- c) Was ist eine unitärer Vektorraum?

2. Quantenmechanische Zustände und Messungen 2+5+3=10 Punkte

 φ_1 und φ_2 seien orthogonale Zustände eines quantenmechanischen Systems.

a) Zeigen Sie, dass die Vektoren

$$\chi_1 = \frac{1}{\sqrt{2}} \left(\varphi_1 + i \varphi_2 \right), \quad \chi_2 = \frac{1}{\sqrt{2}} \left(\varphi_1 - i \varphi_2 \right), \quad \chi_3 = \frac{1}{\sqrt{5}} \left(2 \varphi_1 + \varphi_2 \right),$$

normiert und damit Zustandsvektoren sind. Welche der Zustände χ_2 , χ_2 , χ_3 sind orthogonal zueinander?

- b) Mit welchen Wahrscheinlichkeitein ergeben die folgende Messungen jeweils eine positives Ergebnis?
 - (i) Messung M_{φ_1} am System im Zustand $\psi = \chi_1$,
 - (ii) Messung M_{χ_1} am System im Zustand $\psi = \varphi_1$,
 - (iii) Messung M_{χ_1} am System im Zustand $\psi=\chi_2,$
 - (iv) Messung M_{χ_1} am System im Zustand $\psi=\chi_3,$
 - (v) Messung M_{φ_1} am System im Zustand $\psi = \chi_3$.
- c) Nun betrachen wir die ideale Messung M_{φ_1} . Mit welcher Wahrscheinlichkeit ergibt diese Messung am System im Zustand $\psi=\chi_3$ ein negatives Ergebnis? Wie lautet in diesem Fall der Zustand ψ' nach der Messung?

3. Doppelte Messung

8 Punkte

 φ_1 und φ_2 seien wieder orthogonale Zustände eines quantenmechanischen Systems. Dazu betrachten wir den Superpositionszustand

$$\chi = \frac{1}{\sqrt{5}} \left(\varphi_1 - 2\varphi_2 \right) .$$

Am System im Zustand $\psi=\chi$ werde zuerst die ideale Messung \tilde{M}_{φ_1} ausgeführt, danach im Anschluss die ideale Messung \tilde{M}_{χ} . Das Ergebnis der ersten Messung sei r_1 , das der zweiten r_2 . Das Gesamtergebnis der kombinierten Messung bezeichnen wir mit $E=(r_1,r_2)$. Mit welchen Wahrscheinlichkeiten ergeben sich folgende Ergebnisse:

(i)
$$E = (0,0)$$
, (ii) $E = (0,1)$, (iii) $E = (1,0)$, (iv) $E = (1,1)$?

Wie lauten jeweils die Zustände ψ' bzw. ψ'' nach der ersten bzw. zweiten Messung?

4. Superposition und Gemisch

6 Punkte

Wir betrachten zwei Quellen A und B von Silberatomen. Quelle A emittiert Silberatome, deren Spin sich jeweils in der quantenmechanischen Superposition $\frac{1}{\sqrt{2}}(\varphi_{z+}+\varphi_{z-})$ von "up" und "down" befindet (bzgl. z-Richtung). Quelle B emittiert dagegen Silberatome in einem sogenannten Zustands-Gemisch, bei dem sich der Spin eines Atomes zufällig im Zustand φ_{z+} ("up") oder im Zustand φ_{z-} ("down") befindet (bzgl. z-Richtung), jeweils mit Wahrscheinlichkeit 1/2. Wie kann man anhand von Messungen an den Atomen der jeweiligen Quelle entscheiden, ob Quelle A oder B vorliegt? Oder ist das am Ende unmöglich und die quantenmechanische Superposition ist nicht von dem Zustandsgemisch zu unterscheiden?

5. Verallgemeinerte Euler-Formel

6 Punkte

Eulers Formel $e^{i\varphi}=\cos\varphi+i\sin\varphi$ (für $\varphi\in\mathbb{R}$) besitzt eine in der Quantenmechanik nützliche Verallgemeinerung für Pauli-Matrizen:

$$e^{i\sigma_j\,\varphi} \,=\, \mathbf{1}\cos\varphi \,+\, i\sigma_j\sin\varphi, \qquad \quad j=1,2,3\,, \quad \mathbf{1}=\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}\,.$$

Beweisen Sie diese Beziehung, indem Sie sich an den Beweis der Euler-Formel erinnern und Sie sich zudem davon überzeugen, dass für $l \in \mathbb{N}$

$$\sigma_j^{2l} = \mathbf{1}, \qquad \sigma_j^{2l+1} = \sigma_j \ .$$

Für einen Operator A ist e^A durch die Potenzreihe der Exponentialfunktion definiert: $e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$.