Quantenmechanik - Blatt 2

Wintersemester 2025/26

Webpage: https://www.thp.uni-koeln.de/~rk/qm25.html/

Abgabe: bis Sonntag, 02.11.25, 23:55 in elektronischer Form per ILIAS unter https:

//www.ilias.uni-koeln.de/ilias/goto_uk_crs_6459145.html

6. Zur Diskussion

0 Punkte

- a) Was ist die Beziehung von Observablen und hermiteschen Operatoren?
- b) P sei die Orthogonalprojektion auf den normierten Vektor φ , ψ sei ein weiterer Vektor. Zeigen Sie, dass $\langle \psi, P\psi \rangle = |\langle \varphi, \psi \rangle|^2$.
- c) Was ist die Spektraldarstellung eines hermiteschen Operators?
- d) Weshalb berechnent sich der Erwartungswert einer Observablen A im Zustand ψ gemäß

$$\langle A \rangle_{\psi} = \langle \psi, \hat{A}\psi \rangle$$
 ?

7. Stern-Gerlach-Experiment

2+2+4=8 Punkte

In z-Richtung positiv bzw. negativ polarisierte Silberatome seien durch orthonormale Zustandsvektoren φ_{z+} bzw. φ_{z-} beschrieben. In x- bzw. y-Richtung polarisierte Atome sind dann beschrieben durch Zustandsvektoren

$$\begin{split} \varphi_{x+} &= \frac{1}{\sqrt{2}} \left(\varphi_{z+} \, + \, \varphi_{z-} \right), \qquad \varphi_{x-} = \frac{1}{\sqrt{2}} \left(\varphi_{z+} \, - \, \varphi_{z-} \right), \\ \text{und} \qquad &\varphi_{y+} = \frac{1}{\sqrt{2}} \left(\varphi_{z+} \, + \, i \varphi_{z-} \right), \qquad \varphi_{y-} = \frac{1}{\sqrt{2}} \left(\varphi_{z+} \, - \, i \varphi_{z-} \right) \end{split}$$

(vgl. Vorlesung).

- a) Bestimmen Sie die Betragsquadrate der Skalarprodukte $\langle \varphi_{x+}, \varphi_{y+} \rangle$ und $\langle \varphi_{z+}, \varphi_{y-} \rangle$.
- b) Zeigen Sie, dass

$$\psi = \frac{1}{\sqrt{3}} \left(\varphi_{x+} + \varphi_{y+} \right)$$

ein normierter Vektor (und damit ein Zustandsvektor) ist.

c) Mit welcher Wahrscheinlichkeit ergibt eine μ_y -Messung an einem Silberatom im Zustand ψ das Ergebnis $+\mu_B$ bzw. $-\mu_B$? Welcher Erwartungswert $\langle \mu_y \rangle_{\psi}$ ergibt sich daraus?

8. Pauli-Matrizen

6+3=9 Punkte

Die Komponenten μ_x , μ_y und μ_z des magnetische Momentes $ec{\mu}$ eines Silberatoms bilden Observablen,

die durch Operatoren

$$\hat{\mu}_x = \mu_B \left(P_{\varphi_{x+}} - P_{\varphi_{x-}} \right)$$

$$\hat{\mu}_y = \mu_B \left(P_{\varphi_{y+}} - P_{\varphi_{y-}} \right)$$

$$\hat{\mu}_z = \mu_B \left(P_{\varphi_{z+}} - P_{\varphi_{z-}} \right)$$

dargestellt werden können (vgl. Vorlesung). Hierbei bezeichnet P_χ die Orthogonalprojektion auf einen normierten Vektor χ . Die Vektoren $\varphi_{x\pm}$, $\varphi_{y\pm}$, $\varphi_{z\pm}$ sind wie in Aufgabe 1. definiert.

a) Zeigen Sie, dass die Abbildungsmatrizen dieser Operatoren bzgl. der ONB $(\varphi_{z+}, \varphi_{z-})$ bis auf den Faktor μ_B durch die Pauli-Matrizen

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

gegeben sind, also $\hat{\mu}_x = \mu_B \sigma_1$, $\hat{\mu}_y = \hat{\mu}_B \sigma_2$ und $\mu_z = \mu_B \sigma_3$ (unter der üblichen Gleichsetzung von Symbolen für Operatoren und deren Abbildungsmatrizen).

b) Bestimmen Sie Eigenwerte und -vektoren der Pauli-Matrizen. [Tipp: Aufgabenteil a).]

9. Operatoren in Dirac-Notation

2+2+4=8 Punkte

- a) Forumulieren Sie den Operator $\hat{\mu}_z = \mu_B \left(P_{\varphi_{z+}} P_{\varphi_{z-}} \right)$ in Dirac-Notation unter Verwendung von $|\varphi_{z\pm}\rangle$ und $\langle \varphi_{z\pm}|$.
- **b)** Berechnen Sie den Erwartungswert von μ_z im Zustand $|\psi\rangle = \frac{1}{\sqrt{5}}(|\varphi_{z+}\rangle + 2i\,|\varphi_{z-}\rangle).$
- c) Stellen Sie nun den Operator $\hat{\mu}_z$ durch $|x\pm\rangle$ und $\langle x\pm|$ dar, wobei

$$|x+\rangle = \frac{1}{\sqrt{2}}(|\varphi_{z+}\rangle + |\varphi_{z-}\rangle), \qquad |x-\rangle = \frac{1}{\sqrt{2}}(|\varphi_{z+}\rangle - |\varphi_{z-}\rangle).$$

10. Quantenmechanische Messungen

10 Punkte

Für orthogonale Zustände $\varphi_1,\ldots,\varphi_K$ eines quantenmechanischen Systems betrachten wir aufeinanderfolgende ideale Messungen $\tilde{M}_{\varphi_1},\ldots,\tilde{M}_{\varphi_K}$. Der Zustand des Systems vor der ersten Messung sei ψ_0 , der nach der letzten Messung ψ_K . Zeigen Sie:

- (i) Höchstens eine der K Messungen ist positiv.
- (ii) Die i-te Messung ist positiv (und damit alle anderen negativ) mit Wahrscheinlichkeit

$$p_i = |\langle \varphi_i, \psi_0 \rangle|^2$$
.

In diesem Fall ist $\psi_K = \varphi_i$.

(iii) Alle Messungen sind negativ mit Wahrscheinlichkeit

$$q_K = 1 - \sum_{i=1}^K p_i \ .$$

In diesem Fall ist $\psi_K=\frac{1}{\sqrt{q}_K}\bar{P}_K\psi_0$, wobei \bar{P}_K die Projektion auf den Orthogonalraum von Span $\{\varphi_1,\ldots,\varphi_K\}$ bezeichnet.

[Hinweis: vollständige Induktion über K.]