Quantenmechanik - Blatt 4

Wintersemester 2025/26

Webpage: https://www.thp.uni-koeln.de/~rk/qm25.html/

Abgabe: bis Sonntag, 16.11.25, 23:55 in elektronischer Form per ILIAS unter https:

//www.ilias.uni-koeln.de/ilias/goto_uk_crs_6459145.html

17. Zur Diskussion

0 Punkte

- a) Welcher Zusammenhang besteht zwischen Ortseigenzustand $|\varphi_x\rangle$, Zustandsvektor $|\psi\rangle$ und der Wellenfunktion $\psi(x)$?
- b) Was ist die Wellenfunktion eines Teilchens im Ortzustand $|\varphi_{x_0}\rangle$?
- c) Was ist $\langle \varphi_x | \varphi_{x'} \rangle$ und was $\langle \varphi_x | \hat{x} | \varphi_{x'} \rangle$?
- d) Welche Beziehung gibt es zwischen Translationen T_s und dem Impuls \hat{p} ?
- e) Was ist $[\hat{x}, \hat{p}]$?
- f) Wie lautet der Impulsoperator in Ortsdarstellung?

18. Wellenfunktionen

1+2+3+2=8 Punkte

Ein Teilchen in einer Dimension befindet sich in einem Zustand $|\psi\rangle$ mit der Wellenfunktion

$$\psi(x) = \frac{1}{\sqrt{a}} e^{-|x|/a},$$

wobei a eine postive Konstante der Dimension Länge ist.

- a) Skizzieren Sie die Wellenfunktion für a=1.
- **b)** Zeigen Sie, dass der Zustand $|\psi\rangle$ normiert ist.
- c) Berechnen Sie die Erwartungswerte von x und x^2 im Zustand $|\psi\rangle$. $\left[\int_0^\infty x^2 e^{-x} dx = 2\right]$
- d) Mit welcher Wahrscheinlichkeit ergibt eine Ortsmessung einen Messwert x > a?

19. Skalarprodukt

1+2+3+2=8 Punkte

 $|\psi_1\rangle$ und $|\psi_2\rangle$ sind Zustände eines Teilchens in einer Dimension mit Wellenfunktionen

$$\psi_1(x) = \frac{1}{(2\pi\sigma^2)^{1/4}} e^{-\frac{(x-a)^2}{4\sigma^2}}, \qquad \psi_2(x) = \frac{1}{(2\pi\sigma^2)^{1/4}} e^{-\frac{(x+a)^2}{4\sigma^2}},$$

wobei σ und a positive Konstanten der Dimension Länge sind.

- a) Skizzieren Sie Aufenthaltswahrscheinlichkeitsdichten $|\psi_1(x)|^2$ und $|\psi_2(x)|^2$ für $\sigma=1$ und a=1.
- **b)** Bestimmen Sie die Erwartungswerte von x in den Zuständen $|\psi_1\rangle$ und $|\psi_2\rangle$.
- c) Berechnen Sie $\langle \psi_1 | \psi_2 \rangle$.

d) Der Zustand $|\chi\rangle$ sei die Superposition

$$|\chi\rangle = \alpha(|\psi_1\rangle - |\psi_2\rangle).$$

Ermitteln Sie α so, dass $|\chi\rangle$ normiert ist, skizzieren Sie die Wellenfunktion für $\sigma=1$ und a=1, und bestimmen Sie den Erwartungswert von x im Zustand $|\chi\rangle$.

20. Nützliche Kommutatorrelationen

1+2+2+5=10 Punkte

a) Zeigen Sie für beliebige Operatoren A, B und C:

$$[A, BC] = B[A, C] + [A, B]C$$
.

b) Der Kommutator der Operatoren A und B sei bis auf einen Faktor $c \in \mathbb{C}$ der Einheitsoperator: $[A,B]=c\mathbf{1}$. Zeigen Sie, dass in diesem Fall für $n \in \mathbb{N}$

$$[A, B^n] = c \, n B^{n-1} \, .$$

c) f(x) sei eine analytische Funktion, A und B seien Operatoren mit Kommutator wie in b). Zeigen Sie:

$$[A, f(B)] = c f'(B).$$

d) Bestimmen Sie nun unter Verwendung der vorangegangenen Aufgabenteile folgende Kommutatoren:

$$[\hat{x}, \hat{p}^2], \qquad [\hat{p}, \hat{x}^3], \qquad [\hat{p}, e^{-a\hat{x}^2}], \qquad [\hat{x}, e^{-\frac{i}{\hbar}s\hat{p}}], \qquad [\hat{p}, e^{ik\hat{x}}].$$

Hierbei sind a, s und k reelle Konstanten geeigneter Dimensionen.

21. Translationen

4+3+2=10 Punkte

Für einen beliebigen 1D-Teilchenzustand $|\psi_0\rangle$ sei $|\psi_s\rangle:=T_s|\psi_0\rangle$ der um Strecke s translatierte Zustand. A sei eine beliebige Teilchenobservable.

a) Zeigen Sie:

$$\frac{d}{ds}\langle A\rangle_{\psi_s} = \left\langle \frac{i}{\hbar}[\hat{p}, A] \right\rangle_{\psi_s}.$$

b) Folgern Sie aus Aufgabenteil a):

A ist translationsinvariant*
$$\iff$$
 $[\hat{p}, A] = 0$.

[* im Sinne von: " $\langle A \rangle_{\psi_s}$ ist unabhängig von s für alle Zustände ψ_0 ".]

c) Überprüfen Sie, dass

$$\langle \hat{x} \rangle_{\psi_s} = \langle \hat{x} \rangle_{\psi_0} + s$$
.