Statistische Mechanik Blatt 12

Wintersemester 2010/11

Abgabe: Freitag, 21. Januar, bis 10 Uhr im grauen Kasten vor der Theorie.

Internetseite: $www.thp.uni-koeln.de/\sim rk/statmech$ ws10

48. Entropien

2+4 Punkte

Ein System soll unendlich viele Zustände besitzen, die wir über die ganzen Zahlen $\mathbb Z$ abzählen. Bestimmen Sie die Shannon-Entropie der Verteilungen

$$p_1(n) = \begin{cases} 1/L & \text{für} \quad 0 \le n < L \\ 0 & \text{sonst} \end{cases}$$

$$p_2(n) = A \exp\left(-\frac{(n-n_0)^2}{2\sigma^2}\right)$$

wobei $L \in \mathbb{N}$, $n_0 \in \mathbb{Z}$ und $\sigma \in \mathbb{R}^+$, $\sigma \gg 1$ Parameter sind und A ein Normierungsfaktor ist. Hinweis: für p_2 sollte man an geeigneter Stelle die Summe über alle $n \in \mathbb{Z}$ durch ein Integral über \mathbb{R} ersetzen.

49. Teilchenzahlverteilung

5 Punkte

Zeigen Sie, dass im großkanonischen Ensemble des klassischen idealen Gases die Verteilung der Teilchenzahlen genau die Poisson-Verteilung ist:

$$p(N) = e^{-\langle N \rangle} \frac{\langle N \rangle^N}{N!}$$

p(N) soll die Wahrscheinlichkeit sein, genau N Teilchen im betrachteten Volumen zu finden. Anmerkung: In der Tat gilt das für alle großkanonischen Ensembles aus nichtwechselwirkenden, ununterscheidbaren, klassischen Teilchen. Dennoch finden sich in Aufgabe 45 nützliche Angaben und Ergebnisse.

50. Dichteoperatoren 1

2+2+2+2+3 Punkte

In der Basis $\{|\uparrow\rangle, |\downarrow\rangle\}$ für ein Spin- $\frac{1}{2}$ -Systems, bestimmen Sie jeweils den Dichteoperator, der ein System beschreibt, . . .

- a) ... das sich im reinen Zustand $\frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$ befindet.
- **b)** ... das sich mit Wahrscheinlichkeit 1/2 im Zustand $|\uparrow\rangle$ und mit Wahrscheinlichkeit 1/2 im Zustand $|\downarrow\rangle$ befindet.
- c) ...das sich mit Wahrscheinlichkeit 1/4 im Zustand $|\uparrow\rangle$,mit Wahrscheinlichkeit 1/4 im Zustand $|\downarrow\rangle$ und mit Wahrscheinlichkeit 1/2 im Zustand $\frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle)$ befindet.
- d) Finden Sie mindestens zwei andere Konstruktionen, die ebenfalls den Dichteoperator aus b) als Ergebnis haben.
- e) Bestimmen Sie den Erwartungswert der Observablen $\hat{S}_x = \hbar/2 (|\downarrow\rangle \langle\uparrow| + |\uparrow\rangle \langle\downarrow|)$ der Systeme aus a)-c).

Seien $\hat{\rho}_1$ und $\hat{\rho}_2$ Dichteoperatoren eines Systems. Zeigen Sie, dass für $0 \le \lambda \le 1$ auch $\lambda \hat{\rho}_1 + (1 - \lambda)\hat{\rho}_2$ ein Dichteoperator ist.

52. Druck-Ensemble

5+7 Punkte

Wir wollen ein System aus N wechselwirkenden Teilchen betrachten, die in einen Hohlzylinder mit Querschnittsfläche A eingesperrt sind. Der Boden des Zylinders sei fest, von oben sei er mit einem beweglichen Kolben der Masse M abgedichtet. y beschreibe die Höhe des Kolbens über dem Zylinderboden, die Hamiltonfunktion der Teilchen bei vorgegebenem y sei $H_{1,y}(\mathbf{x})$, wobei \mathbf{x} die inneren Freiheitsgrade der Teilchen zusammenfasst. Die Temperatur sei konstant bei T, die kanonische Zustandssumme des Teilchensystems bei vorgegebenem y sei $Z_1(y)$.

a) Kolben und Teilchen zusammen bilden ein neues System mit Hamiltonfunktion $H_2(\mathbf{x}, y) = H_{1,y}(\mathbf{x}) + Mgy$ (die Luftsäule, die von oben auf den Kolben drückt, betrachten wir als in M einbezogen). Zeigen Sie, dass die kanonische Zustandssumme Z_2 des Gesamtsystems die Gestalt

$$\int_0^\infty Z_1(y)e^{-\beta Mgy}dy$$

annimmt.

b) Zeigen Sie, dass durch $-k_BT \ln Z_2$ im Limes $N \to \infty$ gerade die freie Enthalpie des Teilchensystems bei Druck Mg/A gegeben ist.

Hinweise: Das y-Integral darf man hier durch eine Sattelpunktsnäherung bestimmen. Alternativ genügt es auch, das Differenzial von $-k_BT \ln Z_2$ in den Variablen T und p = Mg/A zu analysieren.

Für die Klausurzulassung:

Von allen Bachelor-Studenten benötigen wir die Matrikelnummer und das Hauptfach. Bitte teilen Sie diese Ihren Übungsgruppenleitern mit, idealerweise beim Besuch der Übung.