Theoretische Physik I (Lehramt) – Blatt 12

Wintersemester 2022/23

Webpage: http://www.thp.uni-koeln.de/~rk/tp1 22.html/

Abgabe: bis Mittwoch, 18.01.23, 10:00 in elektronischer Form per ILIAS unter

https://www.ilias.uni-koeln.de/ilias/goto uk crs 4872329.html

45. Zur Diskussion

0 Punkte

- a) Wie lauten elektrisches Feld und Potenzial einer Punktladung q im Ursprung o? Weshalb? Welche Kraft übt diese Punktladung auf eine andere Punktladung q' am Ort \vec{r}' aus?
- **b)** Wie lautet das Magnetfeld eines unendlich langen geraden Drahts, der den Strom *I* trägt? Weshalb?

46. Elektrisches Feld und Potenzial im Koaxialkabel

5 Punkte

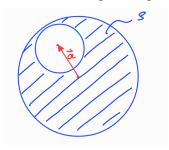
Der innere Leiter von Radius R_1 eines Koaxialkabels trägt elektrische Ladung λ pro Längeneinheit. Der äußere Leiter von Radius R_2 ist entgegengesetzt geladen mit $-\lambda$ pro Längeneinheit. Bestimmen Sie das elektrische Feld \vec{E} und das elektrostatische Potenzial ϕ innerhalb und außerhalb des Kabels.

47. Zylinderkondensator

5 Punkte

Ein Zylinderkondesator mit Radien R_1 , R_2 und der Länge L trägt auf dem inneren Leiter die Ladung Q, auf dem äußeren die Ladung -Q. Welche Spannung $U=\Delta\phi$ liegt zwischen den Leitern an? Wie groß ist damit die Kapazität C=|Q|/|U| des Kondensators?

48. Magnetfeld im Koaxialkabel


5 Punkte

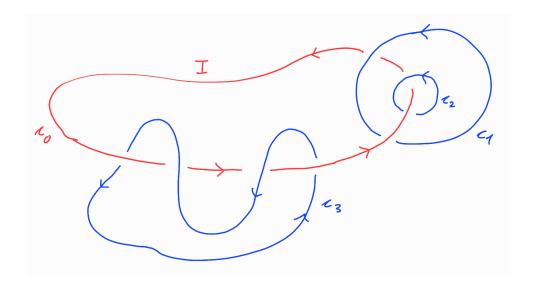
Der innere Leiter des Koaxialkabels aus Aufgabe 46) führt den Strom I, der äußere Leiter den entgegengesetzten Strom -I. Bestimmen Sie das Magnetfeld innerhalb und außerhalb des Kabels.

49. Feld im Hohlraum

5 Punkte

In einem kugelförmigen Körper befindent sich eine kugelförmiger Hohlraum (vgl. Skizze).

Bis auf den Hohlraum ist der Körper homogen geladen mit Ladungsdichte ρ . Zeigen Sie, dass im Hohlraum das homogene elektrische Feld


$$\vec{E}(\vec{r}) = \frac{\rho \vec{a}}{3\varepsilon_0}$$

vorliegt. [Hinweis: Superpositionsprinzip!]

50. Magnetfeld

Eine geschlossene Leiterschleife c_0 führt den konstanten Strom I und erzeugt dadurch ein Magnetfeld \vec{B} . Dieses Magnetfeld wird nun längs der abgebildeten geschlossenen Schleifen c_1 , c_2 und c_3 integriert. Zeigen Sie, dass

$$\int_{c_1} \vec{B} d\vec{l} \, = \, \int_{c_2} \vec{B} d\vec{l} \, = \, \mu_0 I \, , \qquad {
m und} \qquad \int_{c_3} \vec{B} d\vec{l} \, = 0 \, .$$

