Theoretische Physik II (Lehramt, Geophysik, Wahlfach) 3. Übung

Sommersemester 2019

Abgabe bis Dienstag, den 30.04.2019, 17:00 Uhr in den entsprechenden Briefkästen vor dem Eingang des Instituts für Theoretischen Physik.

9. Zur Diskussion

- a) Auf welche Weise wird in der Quantenmechanik eine physikalische Größe G mit einem hermiteschen Operator \hat{G} in Beziehung gesetzt? Weshalb ist dann der Erwartungswert $\langle G \rangle_{|\psi\rangle}$ der Größe im Systemzustand $|\psi\rangle$ durch $\langle \psi | \hat{G} | \psi \rangle$ gegeben? Ist $\langle G \rangle_{|\psi\rangle}$ immer, nie oder nur manchmal durch einen der möglichen Messwerte
 - von G gegeben?
- b) Geben Sie zwei äquivalente Charakterisierungen eines hermiteschen Operators an.
- c) Wie ist der hermitesch adjungierte Operator A^{\dagger} eines Operators A definiert?
- d) Was ist ein Eigenwert und was ist ein Eigenvektor (oder Eigenzustand) eines Operators?

10. Hermitesche Adjunktion und hermitsche Operatoren (3+4+2+2)

a) Zeigen Sie:

$$(|\psi\rangle\langle\varphi|)^{\dagger} = |\varphi\rangle\langle\psi| , \quad (A^{\dagger})^{\dagger} = A .$$
 (1)

b) A, B und C seien hermitesche Operatoren. Welche der folgenden Operatoren sind hermitesch?

$$A+B$$
, $A-B$, AB , $AB+BA$, $AB-BA$, $i(AB-BA)$, $i(ABC-CBA)$.

c) Zeigen Sie, dass für einen hermiteschen Operator A der Erwartungswert $\langle \psi | A | \psi \rangle$ reell ist.

d) Zeigen Sie, dass die Projektion $|\varphi\rangle\langle\varphi|$ auf (einen normierten Vektor) $|\varphi\rangle$ hermitesch ist und nur die Eigenwerte 0 und 1 besitzt.

11. Funktionen von Operatoren

(2+2+4)

Wir betrachten einen Operator $A = \sum_{k=1}^{n} \lambda_k |\phi_k\rangle \langle \phi_k|$. Hierbei seien $|\phi_1\rangle, \dots |\phi_n\rangle$ orthonormale Vektoren und $\lambda_1, \dots, \lambda_n \in \mathbb{C}$.

- a) Wie lauten die Eigenwerte und dazugehörigen Eigenvektoren von A und A^2 ? Hinweis: Bilden Sie explizit das Produkt AA.
- b) Was sind die Eigenwerte und dazugehörigen Eigenvektoren von A^m , $m \in \mathbb{N}$?
- c) f sei eine Funktion mit Reihendarstellung $f(x) = \sum_{m=0}^{\infty} c_m x^m$. Wie lauten die Eigenwerte und zugehörigen Eigenvektoren des Operators $f(A) := \sum_{m=0}^{\infty} c_m A^m$. Hierbei gelte per definitionem $A^0 = \mathbf{1}$. Wie lautet demnach die Spektraldarstellung von f(A)?

12. Hermitesche Operatoren im Zwei-Zustands-System (3+3+4)

Wir betrachten ein (nicht näher spezifiziertes) quantenmechanisches Zwei-Zustands-System mit orthonormalen Zuständen $|\varphi_1\rangle$ und $|\varphi_2\rangle$. Ein physikalische Größe sei durch den Operator $A = a_1 |\varphi_1\rangle \langle \varphi_1| + a_2 |\varphi_2\rangle \langle \varphi_2|$ gegeben $(a_1$ und a_2 seien reell).

- a) Welche Eigenwerte und Eigenvektoren besitzt A?
- b) Was sind die mögliche Messwerte der zu A gehörigen physikalischen Größe und bei welchen Zuständen werden sie mit Wahrscheinlichkeit p=1 gemessen?
- c) Bestimmen Sie den Erwartungswert von A bezüglich der Zustände

$$|\varphi_1\rangle, \quad |\varphi_2\rangle, \quad i |\varphi_1\rangle, \quad \frac{1}{\sqrt{2}} (|\varphi_1\rangle - |\varphi_2\rangle),$$

$$\frac{1}{\sqrt{2}} (|\varphi_1\rangle + i |\varphi_2\rangle), \quad \frac{1}{\sqrt{3}} (|\varphi_1\rangle + \sqrt{2} |\varphi_2\rangle).$$

13. Physikalische Größen im Stern-Gerlach-Experiment (3+5+2)

 $|\chi_{\pm}\rangle$, $|\phi_{\pm}\rangle$ und $|\psi_{\pm}\rangle$ seien wie bisher die Eigenzustände von $\hat{\mu}_x$, $\hat{\mu}_y$ und $\hat{\mu}_z$ für die jeweils möglichen Messwerte $\pm \mu_0$ im Stern-Gerlach-Experiment.

a) Begründen Sie kurz, dass die entsprechenden Operatoren durch

$$\hat{\mu}_{x} = \mu_{0}(|\phi_{+}\rangle\langle\phi_{+}| - |\phi_{-}\rangle\langle\phi_{-}|),$$

$$\hat{\mu}_{y} = \mu_{0}(|\chi_{+}\rangle\langle\chi_{+}| - |\chi_{-}\rangle\langle\chi_{-}|),$$

$$\hat{\mu}_{z} = \mu_{0}(|\psi_{+}\rangle\langle\psi_{+}| - |\psi_{-}\rangle\langle\psi_{-}|)$$

gegeben sind.

b) Zur Bestimmung des Betragsquadrats des magnetischen Moments, $|\vec{\mu}|^2$, betrachten wir die Observable

$$A := \hat{\mu}_x^2 + \hat{\mu}_y^2 + \hat{\mu}_z^2 \,.$$

Zeigen Sie, dass

$$\hat{\mu}_x^2 \, = \mu_0^2 \, \mathbb{1}, \quad \hat{\mu}_y^2 \, = \mu_0^2 \, \mathbb{1}, \quad \hat{\mu}_z^2 \, = \mu_0^2 \, \mathbb{1},$$

und somit

$$A = 3\mu_0^2 \, \mathbb{1} \, .$$

Was bedeutet dies für die möglichen Messwerte von $\hat{\mu}_x^2$, $\hat{\mu}_y^2$, $\hat{\mu}_z^2$ und A? Wie lauten die Erwartungswerte dieser Observablen bzgl. eines beliebigen Zustands $|\psi\rangle$? Welche Messwerte würden man aus Sicht der klassischen Physik erwarten?

c) Gibt es quantenmechanisch gesehen einen Unterschied zwischen den physikalischen Größen $\hat{\mu}_x^2$, $\hat{\mu}_y^2$, $\hat{\mu}_z^2$ und $\frac{1}{3}A$?