10. Übung zum Vorkurs Physik

Wintersemester 2007/2008

Internetseite: http://www.thp.uni-koeln.de/~rk/vorkurs07.html

1. Umkehrfunktion

Bestimmen Sie sowohl zeichnerisch als auch explizit die Umkehrfunktion von

$$f(x) = \frac{1}{x - 1} \ .$$

2. Exponentieller Zerfall

Nehmen Sie an, zwei Isotope eines Elements mit den Halbwertszeiten t_1 und t_2 lagen anfangs (zum Zeitpunkt der Erdentstehung) im Verhältnis r_0 vor, während man sie heute im Verhältnis r findet.

Geben Sie das Lebensalter der Erde als Funktion von r_0 und r an.

(Als Beispiel:
$$t_1(^{235}U) = 7.14 \cdot 10^8$$
 a, $t_2(^{238}U) = 4.501 \cdot 10^9$ a, $t_0 = ^{235}U)/^{238}U) = 1.65$)

3. Logarithmus

Wie sind der Dekadische und der Natürliche Logarithmus miteinander verknüpft?

4. Hyperbolische Funktionen

Skizzieren sie die hyperbolischen Funktionen

$$\sinh x = \frac{e^x - e^{-x}}{2}$$
, $\cosh x = \frac{e^x + e^{-x}}{2}$ und $\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

Welche der Funktionen sind gerade und welche ungerade (bzw. spiegel- und punktsymmetrisch)? Zeigen Sie:

$$\cosh^2 x - \sinh^2 x = 1$$

5. Trigonometrische Funktionen

An einem Heizwiderstand R liegt die mit der Frequenz f oszillierende Wechselspannung $U(t) = U_0 \sin(2\pi f t)$ an.

Zeigen Sie, dass die Heizleistung $P(t) = U^2/R$ doppelt so schnell oszillert wie die Spannung.

[Es hilft das Additionstheorem $\cos(\phi_1 \pm \phi_2) = \cos(\phi_1) \cdot \cos(\phi_2) \mp \sin(\phi_1) \cdot \sin(\phi_2)$.]