12. Übung zur Theoretischen Physik in zwei Semestern II

Wintersemester 2009/2010

Abgabe: keine, Klausur: Freitag, 5. Februar, 10-12 Uhr, SR Kernphysik

37. Entropie und freie Energie eines Magneten

0 Punkte

Ein magnetisches Systems bestehe aus $N \gg 1$ klassischen Spins s_1, \ldots, s_N mit Werten $s_i = \pm 1$. Der Makrozustand A(M) sei die Menge aller Spinzustände $\mathbf{s} = (s_1, \ldots, s_N)$ mit Magnetisierung $M = \sum_i s_i$.

- a) Bestimmen Sie die Boltzmann-Entropie S(M)
- b) Nun werde ein äußeres Magnetfeld B angelegt, infolgedessen das System die magnetisierungsabhängige Energie $E(M) = -\mu BM$ annimmt. Bestimmen Sie die freie Energie als Funktion von M und der Temperatur T und daraus die Magnetisierung M (im Gleichgewicht) als Funktion von T.

[Hinweis: $\frac{1}{2} \ln \frac{1+x}{1-x} = \operatorname{artanh} x$]

38. 1D Ising-Modell

0 Punkte

Ein einfaches Modell eines ferromagnetischen Systems ist das Ising-Modell. Wir betrachten hier eine eindimensionale Version, bestehend aus $N \gg 1$ klassischen Spins s_1, \ldots, s_N , die die Werte $s_i = \pm 1$ annehmen können. Die Spins sind in einer Reihe angeordnet, und je zwei benachbarte Spins s_i und s_{i+1} besitzen die Wechselwirkungsenergie $-Js_is_{i+1}$, wobei J die Austauschenergie ist. Die Hamilton-Funktion des Ising-Modells lautet somit

$$H = -J \sum_{i=1}^{N-1} s_i s_{i+1} .$$

- a) Was lässt sich über die Magnetisierung des System bei sehr tiefer bzw. sehr hoher Temperatur sagen? Begründen Sie Ihre Aussagen anhand der freien Energie des Systems.
- b) Für einen gegebenen Spinzustand $\mathbf{s}=(s_1,s_2,\ldots,s_N)$ bezeichne $n(\mathbf{s})$ die Anzahl der Fehlstellen, d.h. die Anzahl der Positionen $i\in\{1,\ldots,N-1\}$ für die $s_is_{i+1}=-1$. Wir betrachten nun Makrozustände A_{α} zu gegebener Fehlstellendichte $\alpha\in[0,1]$, also $A_{\alpha}=\left\{\mathbf{s}\in\{-1,1\}^N\mid n(\mathbf{s})=\alpha N\right\}$. Zeigen Sie, dass für große N die freie Energie F bis auf eine unbedeutende Konstante durch

$$\frac{1}{N} F = 2J\alpha - k_B T h(\alpha)$$

gegeben ist. $h(x) = -x \ln x - (1-x) \ln(1-x)$ ist wie immer die binäre Entropie.

c) Bestimmen Sie die Fehlstellendichte α (im Gleichgewicht) als Funktion der Temperatur. Vergleichen Sie Ihr Resultat mit a).