9. Übung zur Theoretischen Physik in zwei Semestern II

Wintersemester 2009/2010

Abgabe: Mittwoch 13. Januar

28. Zweizustandssysteme

20 Punkte

Ein mikroskopisches quantenmechanisches System \mathcal{A} habe genau zwei Eigenzustände $|n\rangle$, n=0,1, zu Eigenenergien $E_0=0$ bzw. $E_1=\varepsilon>0$. 1 Wir betrachten nun ein makroskopisches System \mathcal{M} , das aus einer großen Anzahl $N\gg 1$ identischer Systeme \mathcal{A} besteht. Ein Mikrozustand x des Systems \mathcal{M} ist durch die Quantenzahlen n_1,\ldots,n_N , wobei $n_i=0$ oder 1, der N Systeme \mathcal{A} gegeben: $x=(n_1,\ldots,n_N)$. Die Energie des Systems \mathcal{M} bestimmt sich dann aus der Summe der Eigenenergien der in den N Systemen vorliegende Zustände $|n_i\rangle$. Für einen Mikrozustand x erhalten wir demnach die Energie

$$H(x) = \varepsilon \sum_{i=1}^{N} n_i .$$

Wir untersuchen das thermodynamische Gleichgewicht des Systems \mathcal{M} mittels des mikrokanonischen Ensembles.

a) Zeigen Sie folgende Relationen für Zustandsumme, Entropie und Temperatur:

$$Z(E) = {N \choose E/\varepsilon}, \qquad S(E) = k_B N h(\frac{E}{N\varepsilon}), \qquad \frac{1}{T(E)} = \frac{k_B}{\varepsilon} \ln(\frac{N\varepsilon}{E} - 1),$$

$$(N \gg 1, h(x) = -x \ln x - (1-x) \ln(1-x)$$
 bezeichnet die binäre Entropie)

b) Zeigen Sie anhand von a): Ein zufällig aus $\mathcal M$ gewähltes System $\mathcal A$ hat im Mittel die Energie

$$\bar{\varepsilon} = \frac{\varepsilon}{e^{\varepsilon/k_BT} + 1} \ .$$

Die Wahrscheinlichkeit p, dass sich ein zufällig ausgewähltes System \mathcal{A} im Zustand $|1\rangle$ befindet, genügt der Fermi-Verteilung

$$p = f(\varepsilon) \equiv \frac{1}{e^{\varepsilon/k_B T} + 1}$$
.

 $^{1 \}mid 0 \rangle$ und $\mid 1 \rangle$ könnten etwa zwei bestimmte Energie-Niveaus eines Wasserstoffatoms bezeichnen. \mathcal{A} wäre dann ein stark vereinfachtes Modell des Wasserstoffatoms.

Im Unterschied zur Aufgabe 28 sei nun das mikroskopische System \mathcal{A} ein harmonischer Oszillator der Frequenz ω mit Eigenzuständen $|n\rangle$, $n=0,1,2,3,\ldots$, zu Eigenenergien $E_n=\hbar\omega(n+\frac{1}{2})$. Ein Mikrozustand x des makroskopischen Systems \mathcal{M} (= N identische Oszillatoren \mathcal{A}) ist jetzt durch die Quantenzahlen (Besetzungszahlen) n_1,\ldots,n_N gegeben: $x=(n_1,\ldots,n_N),\ n_i=0,1,2,\ldots$ Die Energie des Systems \mathcal{M} im Mikrozustand x ist dann $\sum_{i=1}^N \hbar\omega(n_i+\frac{1}{2})$. Wir subtrahieren die für die thermodynamische Behandlung unbedeutende konstante Gesamtnullpunktsenergie $N\hbar\omega/2$ und erhalten deshalb die Energie

$$H(x) = \hbar\omega \sum_{i=1}^{N} n_i .$$

a) Zeigen Sie folgende Relationen für Zustandsumme, Entropie und Temperatur:

$$Z(E) = {K_E + N - 1 \choose N - 1}$$
, wobei $K_E = \frac{E}{\hbar \omega}$,

$$S(E) = k_B(K_E + N) h(\frac{N}{K_E + N}), \qquad \frac{1}{T(E)} = \frac{k_B}{\hbar \omega} \ln(\frac{N}{K_E} + 1).$$

($N \gg 1$, h(x) bezeichnet wieder die binäre Entropie.)

b) Zeigen Sie anhand von a): Ein zufällig aus $\mathcal M$ gewählter Oszillator hat im Mittel die Energie

$$\bar{\varepsilon} = \frac{\hbar\omega}{e^{\hbar\omega/k_BT} - 1} \; ,$$

und die mittlere Besetzungszahl $\bar{n} \equiv \frac{1}{N} \sum_{i=1} n_i$ genügt der Bose-Einstein-Verteilung,

$$\bar{n} = b(\hbar\omega) \equiv \frac{1}{e^{\hbar\omega/k_BT} - 1} \; .$$

c) Ermitteln Sie Näherungen für \bar{n} für die Fälle $k_BT\gg\hbar\omega$ und $k_BT\ll\hbar\omega$. Interpretieren Sie Ihre Ergebnisse.

Wir wünschen Ihnen frohe Weihnachten und einen guten Rutsch!