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1 Probabilities

Let X be a random variable that takes values in a set of outcomes H. One often has H =
N,R,R+, [a, b], . . .

Talking about the probability P(X = x) that X takes a specific value x ∈ H works well if H
is a countable set. On the other hand, if H is not countable, e.g H = R, this approach fails
because any single point necessarily carries probability 0 (Think about this!) For this and –
more importantly – practical reasons, one would like to consider not only single outcomes, but
whole subsets of outcomes, so called events. Think of rolling a six-faced die and obtaining an
even/odd number. Or rolling a thousand dice and considering the event ”the sum of eyes is
larger than 3700”.

Let us write F for the set of all events. If such a system of subsets is suitable for modeling real-
world events it should at least be compatible with the operations of propositional logic (AND,
OR, NOT), i.e we would like to talk about (A AND B), or (A OR B AND NOT C) happening.
We therefore demand that the following axioms hold

(1) The event ”anything” can happen is included: H ∈ F

(2) Negation: A ∈ F ⇒ Ac ∈ F . If A can happen, so must Ac ≡ H \A.

(3) Logical OR: For I a (at most) countable index set and Ai ∈ F :
∪

i∈I Ai ∈ F

N.B.: A system of sets obeying these axioms is called a σ-algebra.

(a) Show that (1)–(3) imply

i. ∅ ∈ F

ii. A ∩B ∈ F

iii. A \B ∈ F

iv. Bonus:
∩

i∈I Ai ∈ F

Finally we assign probabilities P : F → [0, 1] to the events. For consistency we require that

(1) Something will happen surely: P(H) = 1

(2) Probabilities of mutually exclusive events add up: IfAi are disjoint, then P(
∪

i∈I Ai) =∑
i∈I P(Ai).

(b) Show that

i. P(∅) = 0

ii. P(Ac) = 1− P(A)

iii. P(A \B) = P(A)− P(A ∩B)

iv. For not necessarily disjoint A,B ∈ F : P(A ∪B) = P(A) + P(B)− P(A ∩B)

Hint: Start with H and decompose it into suitable disjoint subsets. It might be helpful to
draw a picture.
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Solution

(a) i. H ∈ F , and by axiom ii. Hc = ∅ ∈ F .

ii. Write A ∩B as the complement of everything that is not in A ∩B:

A ∩B = (Ac ∪Bc)c ∈ F

This is one of De Morgan’s laws. They are valid for arbitrary intersections, which
also solves iv.

iii.
A \B = {x ∈ A|x /∈ B} = A ∩Bc ∈ F

(b) i.
1 = P (H) = P (H ∪ ∅) = P (H) + P (∅) = 1 + P (∅)

The second equality is due to H and ∅ being disjoint.

ii.
1 = P (H) = P (Ac ∪A) = P (Ac) + P (A)

iii.

1 = P ((A \B) ∪ (A \B))c = P (A \B) + P ((A \B)c)

= P (A \B) + P (Ac ∪A ∩B) = P (A \B) + P (Ac)︸ ︷︷ ︸
1−P (A)

+P (A ∩B)

iv.

P (A ∪B) = P (A \B ∪B \A ∪A ∩B) = P (A \B) + P (B \A) + P (A ∩B)

= 2P (A ∪B)− P (A)− P (B) + P (A ∩B)

Note: A tempting choice for F seems to be the powerset over H, which is the set of all
subsets, and trivially fulfills the axioms. This works well in many cases, but fails when
trying to define probabilities if H is not countable.

2 Probability distributions

(Real) random variables come in two flavors: discrete and continuous. Discrete RVs take values
in a countable set, e.g the outcome of rolling a die, or the number of radioactive decays during
some time interval. Continuous RVs can take arbitrary values in (some suitable subset of) the
real numbers.

Let X,Y be a discrete and a continuous random variable that take values in AXand AY ⊆ R,
respectively. For a discrete variable it makes sense to talk about the probability that X takes a
particular value x ∈ AX . We call this function p : AX → [0, 1]

p(x) := P(X = x) ≡ P(X ∈ {x})

the Probability Mass Function (PMF).

Let N ∈ N, 0 ≤ f ≤ 1 and X distributed according to

p(k) =

(
N

k

)
fk(1− f)N−k (1)

which is the PMF of a Binomial distribution.
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(a) Calculate the expectation value ⟨X⟩ =
∑∞

k=0 kp(k) and variance Var(X) = ⟨(X − ⟨X⟩)2⟩
of X. Hint: First show that Var(X) = ⟨X2⟩ − ⟨X⟩2 for any random variable X.

The probability for a continuous RV to take on one specific value is zero. One therefore considers
intervals (a, b] and evaluates the probability P(X ∈ (a, b]). In particular one commonly considers
the half-open intervals (−∞, y], and thus defines the Cumulative Distribution Function
(CDF) of Y FY : R → [0, 1]

FY (y) = P(Y ∈ (−∞, y]) ≡ P(Y ≤ y)

(b) Show that for a ≤ b
P(a < Y ≤ b) = FY (b)− FY (a) (2)

If FY is nicely behaved (absolutely continuous), it possesses a Probability Density Function
(PDF)

FY (y) =

∫ y

−∞
p(x)dx (3)

Obviously

p(x) =
dFY

dy
(x) (4)

wherever FY is differentiable.

Let Y be exponentially distributed on R+ with PDF

p(y) = λe−λy, λ > 0 (5)

(c) Calculate the expection value and variance of Y .

(d) What is the probability for 1 < Y < 2?

(e) Let

F (y) =


0 y ≤ 0
√
y 0 < y < 1

1 y ≥ 1

(6)

What is the corresponding PDF?

Solution

(a)

(b)

P (a ≤ Y ≤ b) = P ((−∞, b] \ (−∞, a]) = P ((−∞, b])− P ((−∞, b] ∩ (−∞, a])

= FY (b)− P ((−∞, a]) = FY (b)− FY (a)

(c)

⟨X⟩ =
∫ ∞

0
xλe−λxdx = −

∫ ∞

0
x
d

dx
e−λxdx

= − 1

λ
e−λx

∣∣∣∣∞
0

=
1

λ

Calculating ⟨X2⟩ works in the same manner.

(d) By integrating the PDF on finds the CDF

FY (y) = 1− e−λy
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and hence
P (1 < Y < 2) = e−λ − e−2λ > 0

(e) The CDF is everywhere but at {0, 1} differentiable. We thus find the PDF

pY (x) =


0 x < 0
1

2
√
x

0 < x < 1

0 x > 1

It is not defined at {0, 1}, but that is not a problem, since the (Lebesgue) integral is
oblivious to isolated points.

3 Joint distributions and covariance

(a) Consider an urn filled with N balls, half of which are black, the other half white. We draw
two balls without replacement. Let’s denote the outcomes X,Y ∈ {b, w}. As a twist we
have the following rule: If the first draw turns up a white ball X = w, discard all remaining
white balls. The next draw will then be a black ball with certainty.

i. Write down the conditional distribution p(y|x).

ii. Calculate the joint distribution p(x, y) and the marginal p(y). Make a table! What is
the probability to get a white ball in the second draw for large N?

Let Cov(X,Y ) = ⟨(X − ⟨X⟩)(Y − ⟨Y ⟩)⟩ denote the covariance of X and Y .

(b) Show that for random variables X,Y, Z and a ∈ R

i. ⟨aY +X⟩ = a⟨Y ⟩+ ⟨X⟩

ii. Cov(aX + Y, Z) = aCov(X,Z) + Cov(Y, Z)

It follows from symmetry that the covariance is also linear in its second argument.

(c) Show that for any independentX,Y , the covariance vanishes. Note that the reverse does not
hold in general! You might want to show first that for X,Y independent ⟨XY ⟩ = ⟨X⟩⟨Y ⟩.

Solution

(a) First note that P (X = b) = P (X = w) = 1/2.

P (Y |X) X Y b w

b N/2−1
N−1

N/2
N−1

w 1 0

P (Y,X) X Y b w

b 1
4
N−2
N−1

1
4

N
N−1

w 1
2 0

P (Y = w) = 1
4

N
N−1 → 1

4 is found by summing over the second column of P (X,Y ).

(b) i.

⟨aX + Y ⟩ =
∑
x

∑
y

ax+ yp(x, y)

= a
∑
x

x
∑
y

p(x, y) +
∑
y

y
∑
x

p(x, y) = a
∑
x

xp(x) +
∑
y

yp(y)
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ii.

Cov(aX + Y, Z) = ⟨(aX + Y − ⟨aX + Y ⟩)(Z − ⟨Z⟩)⟩
= ⟨a(X − ⟨X⟩)(Z − ⟨Z⟩) + (Y − ⟨Y ⟩)(Z − ⟨Z⟩)⟩
= aCov(X,Z) + Cov(Y, Z)

As a corollary one finds Var(aX) = Cov(aX, aX) = a2Var(X).

(c)

Cov(X,Y ) = ⟨XY ⟩ − ⟨X⟩⟨Y ⟩

=
∑
x,y

xypXY (x, y)− ⟨X⟩⟨Y ⟩

=
∑
x

xpX(x)
∑
y

ypY (y)− ⟨X⟩⟨Y ⟩ = 0

The reverse is not true in general: Take X uniformly distributed on [−1, 1] (i.e X has
PDF pX(x) = 1/2 on [−1, 1]), and Y = X2. X and Y are clearly dependent, since X
fixes Y completely. Nevertheless Cov(X,X2) = 0 as is easily demonstrated.

4 Multivariate normal distribution

You are likely familiar with the univariate normal distribution

p(x) =
1√
2πσ

e−
(x−µ)2

2σ (7)

It has expectation value µ and variance σ. One writes X ∼ N (µ, σ) for a random variable
distributed in this way.

Let X1, X2 ∼ N (0, 1) be independent and identically (iid.) standard-normal distributed, and
consider the joint PDF of X = (X1, X2), p(x) = p(x1, x2) = p(x1)p(x2).

Next we correlate X1 and X2 by linearly combining them into a new random vector Y

Y = B ·X (8)

B is a a real invertible matrix.

(a) Use the transformation law for densities (which we use here without proof)

pY(y) = pX(x(y))

∣∣∣∣dxdy (y)
∣∣∣∣ (9)

to show that Y is distributed according to

p(y) =
1

2π
√
detΣ

exp

(
−1

2
yTΣ−1y

)
(10)

where Σ is a real symmetric and positive 2x2 matrix.

(b) Calculate the covariance Cov(Y1, Y2).
Hint: You do not need to explicitely calculate the integral.

(c) Show that Y1, Y2 are independent iff. Σ is diagonal.

(d) Bonus: Show that the marginal distributions p(x) =
∫
R p(x, y)dy are again normally dis-

tributed.
Hint: Explicitely calculate Σ−1.
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Solution

(a) Obviously x = B−1x. The Jacobian of the transformation is simply B−1. Defining
Σ = BBT, and noting that detΣ = detBBT = (detB)2 = (detB−1)−2, the result
follows. Σ is by construction real symmetric and invertible.

(b) Let’s do the calculation for any dimension of B.

Cov(Yi, Yj) = Cov(
∑
k

BikXk,
∑
l

BjlXl)

=
∑
k,l

BikB
T
ljCov(Xk, Xl)

= (BBT )ij = Σij

The second to last equality follows because due to independence Cov(Xk, Xl) = δkl.
Note that this result does not rely on any specifics of the distribution, and is thus valid
in general.

(c) If Σ is diagonal the joint distribution immediately factorizes. On the other hand,
independence implies vanishing covariance and due to b) also the vanishing of the
off-diagonal entries of Σ.

(d) Invert Σ−1 and expand the exponential. You are left with a Gaussian integral, that
can be performed to yield another Gaussian.
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