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5 Entropy I 30 pts.

(a) (10 pts) Show that the entropy H(p1, . . . , pn) assumes its maximum value for a uniform
distribution.
Note: You need to account for the constraint of total probability

∑
pn = 1 via a Lagrange

multiplier.

(b) (10 pts) Now consider a random variable A and maximize H under the additional constraint
⟨A⟩ = a. What is the maximizing distribution? Does it look familiar?

In the lecture the entropy was introduced axiomatically. One of the axioms ensures that it can
be decomposed into entropies of smaller ensembles.

H(p1, p2, ..., pn) = H(p1, 1− p1) + (1− p1)H(
p2

1− p1
,

p3
1− p1

, ...,
pn

1− p1
). (1)

(c) (10 pts) A biased coin is tossed until a “tail” is thrown. The probability for the coin to
come as “head” in a single toss is f . Calculate the entropy of the (random) number of
necessary tosses in two ways: using the definition of entropy, and using the decomposition
of entropy (1).

Solution

(a) Find the maximum of H({pj})− λ(
∑

j pj − 1) wrt. pj :

0 = d

−
∑
j

(pj log pj + λpj)

 =
∑
j

(1 + λ+ log pj)dpj = 0

⇒ pj = exp(−1− λ) = const

Its a maximum due to concavity.

(b) Similarily H({pj})− λ(
∑

j pj − 1)− β(
∑

j pjAj − a) has an extremum at

0 = log pj + λ+ 1 + βAj ⇔ pj = exp(−1− λ) exp(−βAj)

which is just the Boltzmann distribution.

(c) The number of throws until ”tail” comes up X is geometrically distributed

P (X = k) = fk−1(1− f)
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On the one hand one calculates directly

H = −
∞∑
k=1

fk−1(1− f) ((k − 1) log f + log(1− f))

= −(1− f) log f
∑
k

fk−1(k − 1)− (1− f) log(1− f)
∑
k

fk−1

= −(1− f) log f

{
1

(1− f)2
− 1

1− f

}
− (1− f) log(1− f)

1

1− f

= − log f
f

1− f
− (1− f) log(1− f)

1− f
=

H2(f)

1− f

More easily one recognizes that after the first throw is unsuccesful the next throw
follows the same distribution again. Hence, by the decomposition property, we have a
recursion

H(X) = H2(f) + fH(X)

Or, more explicitely (draw a bifurcating tree)

H(X) = H2(f) + fH2(f) + f2H2(f) + · · ·

6 Sum of random variables 20 pts.

Let X,Y be two discrete, independent random variables that take values in A.

(a) (2 pts) Show that independence implies pX(x|y) = pX(x).

Define a new random variable as their sum Z = X + Y .

(b) (10 pts) Show that Z is distributed according to the convolution of pX and pY

pZ(z) =
∑
x∈A

pX(x)pY (z − x) (2)

Hint: Start by considering pZ(z) := P (Z = z) = P (X + Y = z) and rewriting this as an
expectation value over a conditional distribution.

(c) (8 pts) Consider two cubic dice that you may label from the set {0, . . . , 6} as you like. Is
it possible to label them in such a way, that the sum of a roll of both dice has a uniform
distribution over {1, . . . 12}? If yes, find such a configuration.

Solution

(a) p(x|y) = p(x, y)/p(y) = p(x)p(y)/p(y) if X,Y are independent.

(b)

pZ(z) = P (X + Y = z) = P (X = z − Y ) =
∑
x

P (Y = z −X|X = x)P (X = x)

= ⟨P (Y = z −X|X)⟩X
(∗)
= ⟨P (Y = z −X)⟩X =

∑
x

pX(x)pY (z − x))

(∗) because X,Y are independent.

(c) The unique solution is to label one die 1, . . . , 6 and the other 0, 0, 0, 6, 6, 6.

Denote the number of j’s on the first/second die by mj and nj .

There are a total of 36 outcomes, each is supposed to be equally probable. Hence each
outcome must have 36/12 microstates realizing it. A 12 can only be rolled with two
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6s. Since 3 is prime, the only way is for one die to have one 6 and the other three 6s,
w.l.o.g. we set mj = 3, nj = 1.

An 11 is only possible as a combination of 5 and 6. We may either set m5 = 3, n5 = 0
or m5 = 0, n5 = 1. The former choice would exhaust dice number one and would fix 5
as the smallest possible outcome. We must therefor choose the latter option. The same
argument holds for the next lower sums and one is forced to set m5 = m4,m3,m2 = 0
and n5 = n4 = n3 = n2 = 1.

This leaves one with distributing 1s and 0s. The only viable choice is m0 = 3, n0 =
0,m1 = 0, n1 = 1.

7 Weak law of large numbers 10 pts.

LetXn be a sequence of iid. random variables with mean µ and variance σ2. Let X̄ = 1
N

∑N
i=1Xi

denote their arithmatic mean.

Show that in the limit of large N , the arithmatic mean converges (in mean square) to µ

lim
N→∞

Var(X̄ − µ) = 0 (3)

Solution

Var(
1

n

∑
Xn − µ) = Var(

1

n

∑
Xn)

(∗)
=

1

n2

∑
Var(Xn) =

σ2

n2
→ 0

(∗) because {Xj} are independent. The weak law of large numbers is usually stated wrt.
the weaker notion of convergence in probability

∀ϵ > 0 : P(|1/n
∑

Xn − µ| > ϵ) → 0

But by Markov’s inequality convergence in the mean (square) – actually convergence in any
Lr, r ≥ 1 norm – implies convergence in probability.

Actually, the assumptions about Xj can be relaxed to either one of: They have finite
variance, but need only be uncorrelated instead of independent. Or, one insists on iid.
variables, but may drop the finite variance assumption.

3


