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Due to holidays from 04.-09.06 you cannot discuss the sheet in class on 07.06. Whether there
is going to be a tutorial the week after, or if we are going to release a solutions manual is not
decided yet.

11 Rare events 40 pts.

Consider a system of n Ising spins X ∈ {−1,+1}n that individually point up with probability
f . On average the system will show a net magnetization m := 〈M〉 = (2f − 1)n. We would like
to explore how likely deviations from the mean are.

Specifically, consider the event

E = {P ∈ P :
∑
x∈±1

xP (x)−m > α}

Sanov’s theorem tells us that the probability of E behaves like

PQ(E)=̇ exp [−nD(P ∗||Q)] (1)

to first order in the exponent. P ∗ is the distribution which minimizes the Kullback-Leibler
divergence to the true distribution under to the constraints set by E.

(a) 25pt - Find P ∗ for an arbitrary distribution Q and show that it is given by

P ∗(x) = Q(x) exp(λ0 + λ1x). (2)

i.e minimize
D(P ||Q) under the constraint

∑
x

xP (x) ≥ α.

Determine λ0,1 for Q = (1− f, f) from the constraint and normalization.

Now specialize to f = 1/2. You should find λ1 = tanh−1(α).

What’s the probability to observe at least 700 of 1000 spins pointing up? Could you
maybe have guessed P ∗?

(b) 15pt - The central limit theorem ensures that the sum of iid. random variables with
expectation µ and variance σ2 approaches a normal distribution. More precisely, given iid.
random variables X1, . . . Xn as stated

Zn − µn√
n

≡
∑n

j=1Xj − µn√
n

→ N (0, σ2) point-wise.

In particular let Φ(x, σ2) denote the CDF of a centered normal distribution with variance
σ2, then for large enough n

P(Zn ≥
√
nα) ≈ 1− Φ(α, σ2)

Approximate the CDF for large values of n and compare to the result from a).
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12 Sampling bias 20 pts.

Let X = (X1, . . . , Xn) be a sample of iid. random variables. Each Xi is distributed according
to Q, i.e

P(Xj = x) = Q(x)

In the limit of n→∞ we would find that the empirical distribution PX → Q.

What if we skew the sampling process by constraining it to a some event E ⊂ P? If the sample
does not fulfill E it is discarded. What is the distribution of Xi then? Thus we are interested
in the conditional probability

P(X1 = x|PX ∈ E). (3)

The (or rather a) conditional limit theorem1 assures that the sought after distribution is again
given by

P ∗ = arg min
P∈E

D(P ||Q) (4)

in the limit of large n, i.e

P(X1 = x|PX ∈ E)→ P ∗(x) (in probability).

As an example consider Xi ∼ U([0, 1]) uniformly distributed on the interval [0, 1]2.

For whatever reason we decide to only include those X with 〈X〉 ≥ α and Var(X) ≥ β2.

(a) 20pt - Show that
p∗(x) = exp

(
λ0 + λ1x+ λ2x

2
)

by again maximizing the KL-divergence and find λ0,1,2 as functions of α, β!

(b) Bonus 0pt - It is instructive and very easy to simulate such a sampling process on the
computer for different sets of parameters. Implement a routine in your favorite language
and plot the distribution in a histogram!

One set of parameters that works well is

α = 0.5, β = 0.1, n ≈ 10

You probably want to draw in the order of 106 samples to generate a histogram.

It is interesting to see, that the limiting distribution arises already for quite small values
of n. You can also easily explore the behavior for non-uniform Q.

1For the exact statement and prove see Cover & Thomas Ch. 11
2You might be worried that we are suddenly dealing with continuous variables. Just as with the differential

entropy, one obtains analogous statements by quantizing and taking an appropriate limit.
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