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11 Rare events 40 pts.

Consider a system of n Ising spins X ∈ {−1,+1}n that individually point up with probability
f . On average the system will show a net magnetization m := 〈M〉 = (2f − 1)n. We would like
to explore how likely deviations from the mean are.

Specifically, consider the event

E = {P ∈ P :
∑
x∈±1

xP (x)−m > α}

Sanov’s theorem tells us that the probability of E behaves like

PQ(E)=̇ exp [−nD(P ∗||Q)] (1)

to first order in the exponent. P ∗ is the distribution which minimizes the Kullback-Leibler
divergence to the true distribution under to the constraints set by E.

(a) 25pt - Find P ∗ for an arbitrary distribution Q and show that it is given by

P ∗(x) = Q(x) exp(λ0 + λ1x). (2)

i.e minimize
D(P ||Q) under the constraint

∑
x

xP (x) ≥ α.

Determine λ0,1 for Q = (1− f, f) from the constraint and normalization.

Now specialize to f = 1/2. You should find λ1 = tanh−1(α).

What’s the probability to observe at least 700 of 1000 spins pointing up? Could you
maybe have guessed P ∗?

(b) 15pt - The central limit theorem ensures that the sum of iid. random variables with
expectation µ and variance σ2 approaches a normal distribution. More precisely, given iid.
random variables X1, . . . Xn as stated

Zn − µn√
n

≡
∑n

j=1Xj − µn√
n

→ N (0, σ2) point-wise.

In particular let Φ(x, σ2) denote the CDF of a centered normal distribution with variance
σ2, then for large enough n

P(Zn ≥
√
nα) ≈ 1− Φ(α, σ2)

Approximate the CDF for large values of n and compare to the result from a).
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Solution

(a) Let’s consider the more general problem of minimizing the mutual entropy D(P ||Q)
with respect to P under a set of m linear constraints

k = 1, . . . ,m :
∑
x

p(x)fk(x) ≥ dk and
∑
x

p(x) = 1.

First one may transform the inequality constraints to a more canonical form by setting
f̃k = −(fk − dk). The optimization problem then reads

minimize
∑
x

p(x) ln
p(x)

Q(x)

subject to
∑
x

p(x)f̃k(x) ≤ 0,
∑

p(x) = 1

If the constraints were equalities one would proceed by introducing Lagrange multipliers
and look for minima of the corresponding Lagrangian. This is still a valid approach, but
one has to appreciate first that the minimum is attained when the constraints are tight.

Q

P

P ∗

E

Figure 1: The space of all proba-
bility distributions P is a simplex.
E is the event under consideration;
by definition a convex subset of P.
Crucially, Q is not an element of E.

Assume therefor we had found a minimum of D in the
interior of E, P ∈ E0. Note that due to the linearity
of the constraints, E is a convex set. Then consider
the line segment connecting P and Q (see the figure):
(1 − t)Q + tP, t ∈ [0, 1]. It necessarily intersects the
boundary of E in a point P ∗ 6= P . Let the correspond-
ing line parameter be 0 < t∗ < 1. The KL-divergence
is a convex function (of both its arguments)

D(P ∗||Q) = D((1− t∗)Q+ t∗P ||Q)

≤ (1− t∗)D(Q||Q) + t∗D(P ||Q)

= t∗D(P ||Q) < D(P ||Q)

Therefor P is not the minimum, contradicting the as-
sumption. Hence the minimum must be attained at
the boundary, i.e when the constraints are tight.

We may thus proceed in the usual fashion and look
for extrema of the Lagrangian

L({p(x)};λ0, · · · , λm) =
∑
x

p(x)

(
ln
p(x)

Q(x)
− λ0 −

m∑
k=1

λkf̃k(x)

)

yielding

∀x : 0 = ln
p(x)

Q(x)
− λ0 −

m∑
k=1

λkf̃k(x)
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and consequently

p(x) = Q(x) exp

(
λ0 +

m∑
k=1

λkfk(x)

)
Again eλ0 plays the role of the partition function

p(x) =
Q(x) exp (

∑m
k=1 λkfk(x))∑

aQ(a) exp (
∑m

k=1 λkfk(a))
=
Q(x) exp (

∑m
k=1 λkfk(x))

Z

In the problem at hand the only constraint is f1(x) = x, which leads to the desired expres-
sion.

Now we turn to the two-state system, thus x = ±1 and Q = (f, 1 − f). The Lagrange
multiplier λ1 is determined by the constraint (set y ≡ eλ1)

α =
∑
x

xp(x) =

∑
x xQ(x) exp (λ1x)∑
aQ(a) exp (λ1a)

=
fy − (1− f)/y

fy + (1− f)/y

Solving for y gives

λ1 = ln

(√
(1− f)(1 + α)

f(1− α)

)
=

1

2
ln

(
(1− f)(1 + α)

f(1− α)

)
.

By virtue of the identity tanh−1(x) = 1/2 ln(1+x1−x) this expression reduces for f = 1/2 to

λ1 = tanh−1(α)

and
Z = cosh(λ1).

Hence the minimal mutual entropy under the constraints is given by

D(P ∗||Q) =
∑
x

p∗(x) (λ1x− lnZ) = tanh−1(α)〈X〉 − ln cosh(tanh−1(α))

= tanh−1(α)α− ln cosh(tanh−1(α)) =
α2

2
+O(α4)

and by Sanov’s theorem we find that

P (E)=̇ exp (−nα2/2)

for small α.

Having 700 of 1000 spin up corresponds to α = 700−300
n = 0.4. The probability of ob-

serving such an event is of the order e−800. One might have guessed this result by noting
that the only binary distribution that has expected value of 0.7 is P ∗ = (0.7, 0.3) yielding
D((0.7, 0.3)||(0.5, 0.5)) ≈ 0.082 in very good agreement with the previous calculation.

(b) Note: The term ”point-wise” in the statement of the CLT is unfortunate. More precisely
it must read ”[...] converges in distribution”, i.e the cumulative distribution functions
converges point-wise

FXn(x)→ FX(x) wherever FX is continuous.
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In any case, we may estimate

P (Zn/n ≥ α) = P (Zn/
√
n ≥
√
nα) ≈ 1− Φ(

√
nα, 1)

=
1√
π

∫ ∞
√
nα
e−t

2/2dt

The integral can be approximated by an asymptotic series through integration by partsa:∫ ∞
x

e−t
2
dt = −1

2

(
e−t

2

t

∣∣∣∣∣
∞

x

+

∫ ∞
x

e−t
2

t2
dt

)

= e−x
2

(
1

2x
+O(x−3)

)
yielding an exponential tail with rate α2/2 in accordance with the result obtained in a).

aFor more details on this and other approximations of the error function see for example
http://mathworld.wolfram.com/Erf.html

12 Sampling bias 20 pts.

Let X = (X1, . . . , Xn) be a sample of iid. random variables. Each Xi is distributed according
to Q, i.e

P(Xj = x) = Q(x)

In the limit of n→∞ we would find that the empirical distribution PX → Q.

What if we skew the sampling process by constraining it to a some event E ⊂ P? If the sample
does not fulfill E it is discarded. What is the distribution of Xi then? Thus we are interested
in the conditional probability

P(X1 = x|PX ∈ E). (3)

The (or rather a) conditional limit theorem1 assures that the sought after distribution is again
given by

P ∗ = arg min
P∈E

D(P ||Q) (4)

in the limit of large n, i.e

P(X1 = x|PX ∈ E)→ P ∗(x) (in probability).

As an example consider Xi ∼ U([0, 1]) uniformly distributed on the interval [0, 1]2.

For whatever reason we decide to only include those X with 〈X〉 ≥ α and Var(X) ≥ β2.

(a) 20pt - Show that
p∗(x) = exp

(
λ0 + λ1x+ λ2x

2
)

by again maximizing the KL-divergence and find λ0,1,2 as functions of α, β!

(b) Bonus 0pt - It is instructive and very easy to simulate such a sampling process on the
computer for different sets of parameters. Implement a routine in your favorite language
and plot the distribution in a histogram!

One set of parameters that works well is

α = 0.5, β = 0.1, n ≈ 10

You probably want to draw in the order of 106 samples to generate a histogram.

It is interesting to see that the limiting distribution arises already for quite small values of
n. You can also easily explore the behavior for non-uniform Q.

1For the exact statement and prove see Cover & Thomas Ch. 11
2You might be worried that we are suddenly dealing with continuous variables. Just as with the differential

entropy, one obtains analogous statements by quantizing and taking an appropriate limit.
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Solution

An implementation of the sampling is available from the website. If you do not have or do
not want a local installation of Julia (available from http://www.julialang.org), you can
run the notebook at http://juliabox.com.

(a) The calculation to obtain the form of the distribution is the same as in the previ-
ous problem. Unfortunately it is not possible to obtain expressions for the parameters in
closed form. The constraints can be evaluated, but the resulting expressions involve various
error-functions and are not solvable explicitly. One needs to resort to numerical methods.
Conceptually one looks for a set of parameters λ1, λ2 such that

α =

∫ 1

0
xp(x;λ1, λ2)dx β =

∫ 1

0
x2p(x;λ1, λ2)dx− α2

where

p(x;λ1, λ2) =
exp(λ1x+ λ2x

2)

Z(λ1, λ2)
(5)

with partition function

Z(λ1, λ2) =

∫ 1

0
exp(λ1x+ λ2x

2)dx

In the notebook (link on the website) you find outlined two routes to determine the param-
eters. First, one may sample a histogram under the constraints and fit it to the prescribed
exponential form. Note that this is an approximation, but for large values of n we know that
the distribution converges to the form given by (5). This brings its own problem, because
for large n, the events become exponentially rarer and a huge number of samples is required.

The better approach is to numerically solve the system of non-linear equations, which should
yield the exact solution. The notebook compares both routes.

Note: When you play around with the parameters α, β you might come up with strange
numerical solutions. In particular it might happen, that the parameters have the wrong
sign. If this is the case, check whether the constraints are already (partially) fulfilled! For
example, the underlying uniform distribution Q has variance 1/3 − 1/4 ≈ 0.08. When the
constraint is below that value, one must drop the constraint altogether to get a sensible
answer. Look at the above figure showing the probability simplex. The whole minimization
procedure relies on finding P ∗ at the boundary, which in turn implies that Q must not fulfill
any inequality constraint on its own.

The method of Lagrange multipliers applies as is only to equality constraints. In problem
eleven we argued that the minima are necessarily found for tight constraints because Q lies
outside the set of constraints.

There exist generalizations of Lagrange’s method. In particular the Karush-Kuhn-Tucker
conditionsa apply to inequality constraints. Pay special attention to what is called comple-
mentary slackness. In words it means that either the constraints are tight or the multiplier
must be zero.

(b) see notebook and (a)

ahttps://en.wikipedia.org/wiki/KarushKuhnTucker_conditions
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