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16 A bent coin 30410 pts.

Tossing a possibly unfair coin coin F' times, we find that it shows F, times head and Fj times
tails. Given a sequence of tosses D = (s1,...,S)) we want to predict the outcome of the next
toss using Bayesian reasoning. Call the parameter of the model p € [0, 1]. It describes the
probability of the coin coming up as heads.

(a) 15pt - Write down the likelihood of the data P(D|p) as a function of the parameter p.
Assume a flat prior P(p) = 1 and use Bayes’ theorem to derive the posterior P(p|D).

Hint: You will find the integral representation of the beta function
1

B(n,m) = / 21— z)ldr =
0

useful.

(b) Bonus 10pt - Sketch the posterior distribution under different data, e.g
(Faa Fb) € {(37 7)7 (307 70)7 (3007 700)}

Hint: Tt is advisable to do this with a computer. Due to the factorials you probably cannot
implement P(p|D) directly. Implement and possibly simplify log P(p|D) instead and plot its
exponential.

(c) 5pt - Calculate the probability P(s|D) of the next toss s.

Note how the Bayesian approach effortlessly incorporates the limited knowledge due to the
finite sample size into the prediction!

On the other hand, it is often impossible to evaluate the necessary integrals, e.g

P(D) = [ P(p)P(D|p)dp, explicitly. In that case we need to find ways to approximate the
posterior. One such method is know as MAP (maximum a posteriori). In this approximation
one replaces the posterior distribution by the value of its maximum.

p* = arg max P(p|D) = arg max P(D|p)P(p).
P P

Note that for a flat prior, the MAP estimator is the maximum likelihood estimator.

(d) 10pt - Find the MAP estimator of p for a flat prior. Compare to the result of (b), in
particular if FF =1 or F' = 0.

17 Maximum a priori estimators 30 pts.

Bayesian inference requires specifying prior distributions. One might feel a little uneasy due to
this freedom, and also because there is usually no canonical choice of a prior. But actually, one
should rather embrace it as a blessing, because it enables us to make all our assumptions
explicit. If we want to convey that nothing about the model parameters was known
beforehand, we may chose an uninformative (flat) prior.
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At the same time one should not overestimate the importance of the prior. Intuitively one
expects that the prior becomes less important as more data becomes available. Whatever we
assumed to know about the model is either phased out or confirmed by real data. We would
like to examine this behavior by an example.

Let (z1,...xpr) be a sequence of samples from a normal distribution with mean p and variance
o2. Let p(z|p, 0?) denote the density.

The goal is to estimate the parameters using MAP and ML (maximum likelihood) estimators.

(a)10pt - Maximize the log-likelihood function L({z;}|u,0?) = > Inp(xlu, 02) and show
that the ML estimates of ;1 and o2 are given by
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Let us focus on the mean g only. We would like to find another estimator under a more
general prior. A very opportune choice is itself a Gaussian

1 1 m— W 2
2 m
J— 2
p(,u\,um,om) — 5 T2n eXp( 2 < > ) ( )

The reason is that now the posterior is a Gaussian itself. Priors with this property are called
conjugate priors'. The parameters i, and o,, of the prior are called hyper-parameters. The
results of our inference will depend on them, but hopefully in a non-crucial manner.

(b)20pt - In analogy to (a) maximize the posterior (better: its logarithm)

firap = argmax { [ [ plajlm 0®) - p(ulpm, o2,) (3)
I :
J

and show that
. Mo? o?
HMAP = m Z Ly W“m (4)

Discuss the result, in particular the cases M — oo and o, — {0, 00}.

Note: Only for the mean is the conjugate prior a Gaussian. If we wanted to construct an
analogous estimator for the variance, we would use a prior for ¢ that is gamma-distributed.

'see Wikipedia for a table of conjugate priors for a range of different models.



