Lineare Algebra und Vektoranalysis
Sommersemester 2019
Blatt 4, Abgabe 02.05.2019 bis 10:00
U. Michel, S. Kleinbölting

1 Eigenvalues/-vectors and diagonalization (12 P) Determine the eigenvalues and all corresponding eigenvectors of the following matrices.
a)

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 3 & 0 \\
-1 & 2 & 1
\end{array}\right)
$$

c)

$$
\mathbf{C}=\left(\begin{array}{ccc}
\cos \phi & 0 & \sin \phi \\
0 & 1 & 0 \\
-\sin \phi & 0 & \cos \phi
\end{array}\right)
$$

b)

$$
\mathbf{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

d)

$$
\mathbf{D}=\left(\begin{array}{cccc}
0 & 0 & 0 & a \\
0 & 0 & b & 0 \\
0 & b^{*} & 0 & 0 \\
a^{*} & 0 & 0 & 0
\end{array}\right)
$$

Interpret your results for \mathbf{B}, \mathbf{C} geometrically.
Argue whether each matrix is diagonalizable. If yes, write down the corresponding change of basis matrix and verify by explicit multiplication that each matrix is appropriately diagonalized.

2 Matrix exponential (18 P) Let $\operatorname{Mat}(n \times n, \mathbb{K})$, mit $\mathbb{K}=\mathbb{R}, \mathbb{C}$ be the set of all real- or complex-valued $n \times n$-matrices and $\mathbf{I}_{n} \in \operatorname{Mat}(n \times n, \mathbb{K})$ the $n \times n$-identitymatrix.

Since we know how to form polynomials of matrices, one could try to extend real or complex power serieses to matrices and therefore make a lot of useful functions accessible to matrices.

As motivation and because it is important in practice we consider the exponential function. Analagously to the complex exponential we define for $\mathbf{A} \in \operatorname{Mat}(n \times n, \mathbb{K})$:

$$
\exp (\mathbf{A})=\mathbf{I}_{n}+\sum_{k=1}^{\infty} \frac{1}{k!} \mathbf{A}^{k}
$$

a) (2 P) As was demonstrated in the lecture, a system of linear differential equations can be cast into matrix form.

$$
\begin{equation*}
\dot{\mathbf{x}}=\mathbf{A x} \tag{1}
\end{equation*}
$$

Assume A to be constant (i.e. its entries do not depend on t). Demonstrate that

$$
\mathbf{x}(t)=\exp (t \mathbf{A}) \mathbf{x}_{\mathbf{0}}
$$

is a solution of (1) with initial condition $\mathbf{x}(0)=\mathbf{x}_{\mathbf{0}}$.
Hint: One can differentiate the exponential term by term.

Solving a linear ODE (with constant coefficients) hence reduces to finding a matrix exponential. Reason enough to study them!
b) (4 P) Calculate the exponentials of the following matrices:

$$
\mathbf{A}_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbf{A}_{2}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{A}_{3}=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right), \quad \mathbf{A}_{4}=\left(\begin{array}{ccc}
0 & a & b \\
0 & 0 & c \\
0 & 0 & 0
\end{array}\right)
$$

In these four examples, the exponential could be calculated relatively easily by brute force. This is not always possible. If a matrix is diagonalizable, there is a more systematic approach.
c) $(1 \mathrm{P})$ Let $\mathbf{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right) \in \operatorname{Mat}(n \times n, \mathbb{K})$ be an arbitrary $n \times n$ diagonal matrix. Show that

$$
\begin{equation*}
\exp (\mathbf{D})=\operatorname{diag}\left(\mathrm{e}^{d_{1}}, \ldots, \mathrm{e}^{d_{n}}\right) \tag{2}
\end{equation*}
$$

d) (1P) Let $\mathbf{X} \in \operatorname{Mat}(n \times n, \mathbb{K})$ be diagonalizable, i.e. there are matrices \mathbf{P}, \mathbf{D}, such that $\mathbf{X}=\mathbf{P D P}^{-1}$, where $\mathbf{D}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is diagonal. Deduce that

$$
\exp (\mathbf{X})=\mathbf{P} \exp (\mathbf{D}) \mathbf{P}^{-1}
$$

gilt, where $\exp (\mathbf{D})$ is given by (2).
e) (4P) Use the formula from d) to determine the exponential of \mathbf{A} und \mathbf{D} from problem 1.
f) (4P) Expression (1) is valid only for first-order ODEs. This doesn't pose a substential obstacle though, because any equation of higher order can be written as a system of first-order equations.

Consider again the damped harmonic oscillator $\ddot{x}+\gamma \dot{x}+\omega_{0}^{2} x=0$. Introducing an auxiliary variable $v \equiv \dot{x}$, allows us to cast the ODE in the form

$$
\binom{\dot{v}}{\dot{x}}=\overbrace{\left(\begin{array}{cc}
-\gamma & -\omega_{0}^{2} \\
1 & 0
\end{array}\right)}^{\mathbf{A}}\binom{v}{x}
$$

Verify this! Find the solution to initial conditions (v_{0}, x_{0}) by using results from a) and d).
g) (2 P) Matrix exponentials do not behave like complex exponentials and one needs to exercise caution. For example the regular exponential function satisfies

$$
\mathrm{e}^{a} \mathrm{e}^{b}=\mathrm{e}^{a+b}=\mathrm{e}^{b} \mathrm{e}^{a} .
$$

Show that the matrix exponential does not fulfill this identity in general. Can you guess why that might be?

Hint: Find a simple counterexample.

