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1 Eigenvalues/-vectors and diagonalization (12P) Determine the eigenval-
ues and all corresponding eigenvectors of the following matrices.

A =

 1 2 −1
0 3 0
−1 2 1

 ,

a)

B =

(
0 1
−1 0

)b)

C =

 cosφ 0 sinφ
0 1 0

− sinφ 0 cosφ


c)

D =


0 0 0 a
0 0 b 0
0 b∗ 0 0
a∗ 0 0 0


d)

Interpret your results for B,C geometrically.

Argue whether each matrix is diagonalizable. If yes, write down the corresponding
change of basis matrix and verify by explicit multiplication that each matrix is appro-
priately diagonalized.

2 Matrix exponential (18P) Let Mat(n × n,K), mit K = R,C be the set of
all real- or complex-valued n × n-matrices and In ∈ Mat(n × n,K) the n × n-identity-
matrix.

Since we know how to form polynomials of matrices, one could try to extend real or
complex power serieses to matrices and therefore make a lot of useful functions accessible
to matrices.

As motivation and because it is important in practice we consider the exponential func-
tion. Analagously to the complex exponential we define for A ∈ Mat(n× n,K):

exp(A) = In +

∞∑
k=1

1

k!
Ak

a) (2 P) As was demonstrated in the lecture, a system of linear differential equations
can be cast into matrix form.

ẋ = Ax (1)

Assume A to be constant (i.e. its entries do not depend on t). Demonstrate that

x(t) = exp(tA)x0

is a solution of (1) with initial condition x(0) = x0.

Hint: One can differentiate the exponential term by term.
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Solving a linear ODE (with constant coefficients) hence reduces to finding a matrix
exponential. Reason enough to study them!

b) (4 P) Calculate the exponentials of the following matrices:

A1 =

(
1 0
0 −1

)
, A2 =

(
0 1
1 0

)
, A3 =

(
1 1
0 1

)
, A4 =

 0 a b
0 0 c
0 0 0

 .

In these four examples, the exponential could be calculated relatively easily by brute
force. This is not always possible. If a matrix is diagonalizable, there is a more systematic
approach.

c) (1 P) Let D = diag(d1, . . . , dn) ∈ Mat(n × n,K) be an arbitrary n × n diagonal
matrix. Show that

exp(D) = diag
(

ed1 , . . . , edn
)

(2)

d) (1 P) Let X ∈ Mat(n× n,K) be diagonalizable, i.e. there are matrices P,D, such
that X = PDP−1, where D = diag (λ1, . . . , λn) is diagonal. Deduce that

exp (X) = P exp(D)P−1,

gilt, where exp(D) is given by (2).

e) (4 P) Use the formula from d) to determine the exponential of A und D from
problem 1.

f) (4 P) Expression (1) is valid only for first-order ODEs. This doesn’t pose a sub-
stential obstacle though, because any equation of higher order can be written as a
system of first-order equations.

Consider again the damped harmonic oscillator ẍ+ γẋ+ ω2
0x = 0. Introducing an

auxiliary variable v ≡ ẋ, allows us to cast the ODE in the form

(
v̇
ẋ

)
=

A︷ ︸︸ ︷(
−γ −ω2

0

1 0

)(
v
x

)
Verify this! Find the solution to initial conditions (v0, x0) by using results from a)
and d).

g) (2 P) Matrix exponentials do not behave like complex exponentials and one needs
to exercise caution. For example the regular exponential function satisfies

eaeb = ea+b = ebea.

Show that the matrix exponential does not fulfill this identity in general. Can you
guess why that might be?

Hint: Find a simple counterexample.
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