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1 Transformation behaviour under a change of basis (20P) The object
we deal with in linear algebra, i.e. vectors, linear maps, are all declared independetly of
a choice of basis. This needs to be so, since a choice of basis is completely arbitrary.
Thus the component representations of these objects (column vectors, matrices,...) are
also arbitrary. In practice one often tries to find a basis in which the components take
on a particularly simple form (e.g. a diagonal matrix).

In order to be able to describe the same object in different bases, one must know how
their components change under a change of basis. All transformation properties are
direct consequences of this invariance. The vector or the linear map themselves do not
depend on the choice of basis.

Let V and W be vectorspaces over R or C, and E = {ei}, E ′ = {e′i} ⊂ V and F =
{fi},F ′ = {f ′i} ⊂ W respectively arbitrary bases of these spaces. In particular there
exist coefficients Sij and Tij such that

ei =
∑

e′jSji

fi =
∑

f ′jTji

Let further L : V →W be a linear map.

a) (1 P) Deduce from the invariance of an arbitrary vector v ∈ V , that its components
transform according to

v′ = Sv

under a change of basis.

b) (1 P) Deduce further from the invariance of w = Lv, that by changing bases in V
as well as W , the matrix representation of L transforms according to

L′ = TLS−1.

We are now going to investigate an object that transforms neither like a vector nor a
linear map. The lecture introduced the notion of scalar (or inner) product. We restrict
ourselves to the case of a real, euclidean inner product.

As you are aware, an inner product is a bi linear map V × V → R. It also exists
independently from a choice a basis.

We may still calculate the inner product from the components of the involved vectors
after choosing a (not necessarily orthonormal) basis by writing

〈u, v〉 =

〈∑
i

uiei,
∑
j

vjej

〉
=
∑
i,j

uivj 〈ei, ej〉 ≡
∑
i,j

uivjgij (1)

The last equality defines the quantity gij = 〈ei, ej〉 which is called the metric tensor.
It contains in a given basis all information about an inner product – just like matrices
define a linear map completely.
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c) (2 P) Convince yourself that (1) can be written in the form

〈u, v〉 = utgv (2)

, where ut = (u1, . . . , un) is a row vector and (g)ij = gij the matrix of components
of the metric tensor.

d) (3 P) Proof that with respect to an orthonormal basis

〈u, v〉 = utIv = u · v =
∑

uivi (3)

I is the identity matrix. Hence any inner product is the standard dot product in
an orthonormal basis.

What happens under a change of basis?

Show that (3) is in general not invariant under a change of basis (e.g. by scaling
the basis). Which property does a change of basis matrix need to have, in order
to leave u · v invariant?

To define an invariant object it is therefore not sufficient to only regard u ·v. One needs
to transform the metric tensor too. Again, the transformation behaviour follows from
demanding invariance of the inner product under change of basis.

e) (5 P) Deduce from the invariance of 〈u, v〉 under basis change that the metric tensor
transforms as

g′ = (S−1)tgS−1

if u′ = Su. Show first that transposition and inversion commute, i.e. that

(S−1)t = (St)−1

[Hint: Show and use (AB)t = BtAt first].

f) (5 P) Proof further that the defining properties of an inner product imply the
following properties of g

(i.) g is symmetric.

(ii.) g is invertible.

(iii.) g is diagonalizable and its eigenvalues are strictly positive

and that vice versa any symmetric matrix with strictly positive eigenvalues defines
an inner product according to (2)

g) (3 P) Let g =

(
1 a
a 2

)
wrt. the canonical basis of R2. For which a ∈ R does this

define a valid inner product?

Find the basis that is orthonormal wrt. to the inner product given by g. Diagonalize
g first and then think about how you can achive normalization of the basis vectors.
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2 Orthogonal Maps (10P) In the lecture you learned about orthogonal maps. A
linear map of an euclidean vector space L : V → V on itself1 is called orthogonal if

∀x, y ∈ V : 〈Lx,Ly〉 = 〈x, y〉

holds.

Call O(V ) the set of all orthogonal maps on V .

We are going to discuss some important properties of these maps.

a) (3 P) Proof that L is invertible 2 and that L−1 is orthogonal as well.

Further show that O(V ) is a group under concatination.

What is there to say about matrix representations of orthogonal maps?

b) (2 P) Show that a matrix L of L ∈ O(V ) wrt. an orthonormal basis fulfills

L−1 = Lt

We call a matrix orthogonal if it has this property.

c) (3 P) Orthogonal matrices may be defined by many equivalent properties.

Show that the following are equivalent

(i) L−1 = Lt.

(ii) For all x,y ∈ Rn : Lx · Ly = x · y.

(iii) The columns (l1, . . . ln) of L are orthonormal: li · lj = δij .

d) (2 P) Proof that det(L) = ±1. Which kind of transformations do the different
signs represent? Consider the special case of R3 for that.

1called an endomorphism
2an invertible linear map is called an isomorphism
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