Lineare Algebra und Vektoranalysis

Sommersemester 2019

Blatt 6, Abgabe 16.05.2019 bis 10:00

Institut für Biologische Physik J. Berg U. Michel, S. Kleinbölting

The real Fourier series of a 2T-periodic function $f : \mathbb{R} \to \mathbb{R}$ $(f(x+2T) = f(x) \ \forall x \in \mathbb{R})$ is defined as:

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega x) + b_n \sin(n\omega x) \right) \quad \text{with}$$

$$\omega = \frac{\pi}{T}, \quad \frac{a_0}{2} = \frac{1}{2T} \int_0^{2T} f(x) dx,$$

$$a_n = \frac{1}{T} \int_0^{2T} f(x) \cos(n\omega x) dx, \quad b_n = \frac{1}{T} \int_0^{2T} f(x) \sin(n\omega x) dx.$$

$$(1)$$

1 Properties of the Fourier coefficients (14 P)

a) (2P) Show that if f(x) has period 2T, then for any $c \in \mathbb{R}$

$$\int_0^{2T} f(x) dx = \int_c^{c+2T} f(x) dx$$

Argue that one is free to integrate over any interval of length T to calculate the Fourier coefficients a_n, b_n .

Hint: Partition the integration domain and use the periodicity of the integrand.

This often allows to simplify calculations by chosing the integration domain cleverly.

Let $f: \mathbb{R} \to \mathbb{R}$ be a 2T-periodic function. A function is called *even*, if

$$f(-x) = f(x) \quad \forall x \in \mathbb{R},$$

and odd, if

$$f(-x) = -f(x) \quad \forall x \in \mathbb{R}.$$

- **b)** (2 P) Proof that $f(x) = \cos(\alpha x) \ \forall \alpha \in \mathbb{R}$ is even. *Hint:* Euler's formula.
- c) (2 P) Proof that $g(x) = \sin(\beta x) \ \forall \beta \in \mathbb{R}$ is odd.
- **d)** (4P) Show that for any odd function $f_u : \mathbb{R} \to \mathbb{R}$, and even function $f_g : \mathbb{R} \to \mathbb{R}$ respectively:

$$\int_{-a}^{a} f_u(x) dx = 0 \quad \forall a \ge 0 \quad \text{and} \quad \int_{-b}^{b} f_g(x) dx = 2 \int_{0}^{b} f_g(x) dx \quad \forall b \ge 0.$$

- e) (4P) Proof the following statements
 - a) The real Fourier series (1) of an odd, 2T-periodic function f_u has $a_0 = 0$ and $a_n = 0 \ \forall n \in \mathbb{N}_+ = \{1, 2, 3, \ldots\}.$
 - b) The real Fourier series (1) of an even, 2T-periodic function f_g has $b_n = 0$ $\forall n \in \mathbb{N}_+$.

2 Fourier serieses of periodic functions (16 P)

- a) (2P) Draw the saw-tooth function defined as f(x) = -2x on the interval]-2,2] and periodically continued.
- b) (10 P) Determine the real Fourier series of said saw-tooth.

Hint: You may plot your result on www.wolframalpha.com. For example: the command

plot 4/Pi*(sum 1/(2*n+1)*sin((2*n+1) x) from n=0 to 9),

draw the Fourier series of the rectangular function from the lecture up to order 9.

c) (4P) Determine the Fourier series of $f(x) = \sin^2(6x)$ for half-period $T = \pi$.

Hint: You do not need to calculate any integrals.

3 Complex vs. real Fourier series (10 P) Analogously to the real Fourier series (1) one defines the *complex Fourier series* of real-valued, 2T-periodic functions $f: \mathbb{R} \to \mathbb{R}$:

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{in\omega x}$$
 with $\omega = \frac{\pi}{T}$ und $c_n = \frac{1}{2T} \int_0^{2T} f(x) e^{-in\omega x} dx \, \forall n \in \mathbb{Z}$

a) (7P) Proof the following connection between real and complex Fourier coefficients

$$c_0 = \frac{a_0}{2}$$
, $c_n = \frac{1}{2}(a_n + ib_n) \ \forall n < 0$, $c_n = \frac{1}{2}(a_n - ib_n) \ \forall n > 0$.

b) (3P) Calculate the complex coefficients for the saw-tooth function from problem 2