1 More about complex differentiablity $(6P)$ Check that the following functions u are harmonic ($\Delta u = 0$). Find in both cases another harmonic function v, such that $u + iv$ is analytic.

a)
$$
u_1(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2
$$

b)
$$
u_2(x, y) = \ln (x^2 + y^2)
$$

2 A real integral $(4P)$ Determine the following real integral by converting it into a line integral along a suitable path.

$$
\int_0^{2\pi} \frac{1}{2 + \cos t} \, \mathrm{d}t
$$

3 Liouville's theorem (10 P) A function that is holomorphic on all of $\mathbb C$ is called entire. In particular, an entire function can be expanded into a power series with infinite radius of convergence around any point.

A function f is called *bounded* if there exists $0 \leq M < \infty$ such that for all z from the domain $|f(z)| \leq M$ holds.

a) (4P) Let $D \subset \mathbb{C}$ be the disk of radius ρ and center a. It boundary is K. Let further f be holomorphic on $D \cup K$. Show the following bound:

$$
\left|f^{(n)}(a)\right|\leq \frac{n!\max_{z\in K}\{|f(z)|\}}{\rho^n}
$$

b) (2P)Equipped with this, proof

Liouville's theorem: A bounded, entire function $f: \mathbb{C} \to \mathbb{C}$ is constant.

- c) (1 P) Why isn't $f = \sin \omega$ not in contradiction to the theorem?
- d) (3 P) Using Liouville's theorem, proof the

Fundamental theorem of algebra: Any non-constant polynomial p with complex coefficients has at least one complex root.

Hint: Consider the function $1/p$ and proof the statement by contradiction.

Deduce from this, that a polynomial of degree n has exactly n complex roots.

4 Connection of Taylor- and Fourier-serieses $(10 P)$ Let f be a holomorphic function on U , where U contains the.

Write $z = re^{i\phi}$ inside the radius of convergence of the series expansion of f around zero. **a**) (1 P) Show that $f(z) = \sum_n a_n r^n \cos n\phi + i \sum_n a_n r^n \sin n\phi$.

If one splits the function $f = u + iv$ into real and imaginary part, the complex power series yields Taylor series in r, as well as Fourier seris in ϕ .

b) (3 P) Determine the Fourier series of the real function

$$
v(\phi) = \frac{2\sin\phi}{5 - 4\cos\phi}
$$

c) (3P) Show that for $m \in \mathbb{N}$

$$
\int_0^{2\pi} v(\phi) \sin(m\phi) d\phi = \frac{\pi}{2^m}
$$

d) (3 P) Determine the Taylor expansion of the real function

$$
\tilde{v}(r) = \frac{r}{\sqrt{2}(1+r^2) - 2r}
$$

around $r = 0$.

Hint for b)-*d*): Consider the power series of $(1-z)^{-1}$.