Seminars

Summer term 2014

Date Time Speaker Topic Room
April 8 12:00 Antonin Coutant
(AEI Potsdam)
Unitary and non-unitary transitions around a cosmological bounce R 215
April 15 12:00 Arezu Dehghanfar
(Köln)
The cosmological constant and Dark Energy R 215
May 6 12:00 Branislav Nikolić
(Köln/Bonn)
Shape dynamics as a timeless theory R 215
May 27 12:00 Marcel Zimmer
(Köln)
Bachelorkolloquium: „Fermionen und das Spin-Statistik-Theorem“ R 215
12:30 Anne Franzen
(Utrecht)
Boundedness of a massless scalar wave on Reissner–Nordström interior backgrounds R 215
June 3 12:00 Patrick Dürr
(Tübingen)
Aspects of Alternative Theories of Gravity R 215
June 17 12:00 Jens Boos
(Köln)
Poincaré Gauge Theory of Gravity R 215
June 24 12:00 Jens Boos
(Köln)
Exterior calculus and Einstein–Cartan theory R 215
July 1 12:00 Branislav Nikolić
(Köln/Bonn)
Quantization of higher-derivative gravity R 215
July 8 12:00 Heinrich Päs
(Dortmund)
Sterile neutrino altered dispersion relations in particle physics, astrophysics and cosmology R 215
July 15 12:00 Ali Akpinar
(Köln)
Bachelorkolloquium R 215
12:30 Pranjal Dhole
(Köln/Bonn)
Cosmological constant from emergent gravity R 215
Sept. 11 10:00 Nassim Tanha
(Köln)
Master colloquium: “First Excited State: Quantum Gravitational Corrections to the Power Spectrum of Density Fluctuations from Canonical Quantum Cosmology” R 215

 


Past seminars


Winter term 2013/14
Summer term 2013
Winter term 2012/13
Summer term 2012
Winter term 2011/12
Summer term 2011
Winter term 2010/11
Summer term 2010
Winter term 2009/10
Summer term 2009
Winter term 2008/09
Summer term 2008
Winter term 2007/08
Summer term 2007
Winter term 2006/07
Summer term 2006
Summer term 2005
Winter term 2004/05
Summer term 2004
Winter term 2003/04
Summer term 2003
Antonin Coutant (AEI Potsdam)

Unitary and non-unitary transitions around a cosmological bounce

In this presentation, we will discuss the notion of time and unitarity in the vicinity of a bounce in quantum cosmology, that is, a turning point for the scale factor. This starts from the Vilenkin approach to the interpretation of the solutions of the Wheeler-DeWitt equation. In this approach, unitarity is defined through the conserved current and is by nature an approximate concept. In minisuperspace it amounts to using the scale factor as a time variable. A unitary evolution is recovered when the latter becomes semi-classical enough.

Unfortunately, WKB methods drastically fail near a turning point and the scale factor cannot play the role of time in scenarios with a bounce or a recollapsing phase for the universe. In this work, we extend the results of Vilenkin Massar and Parentani to momentum representation. For this, we investigate the dynamics of matter transitions when using its conjugate momentum as a time. In a first part, we describe the precise conditions so as to recover unitarity, and hence, a consistent notion of probability. In a second part, we discuss a concrete example in the vicinity of a bounce.

Close
Patrick Dürr (Tübingen)

Aspects of Alternative Theories of Gravity

Modifying standard theories of gravity is looking back upon a long history. In this talk, we shall examine the contemporary motivation behind and some exciting results and aspects of one of the most natural extensions of GR, Brans–Dicke-like theories, in which gravity is also mediated by a scalar (thus, rendering the gravitational coupling “constant” a dynamical variable).

After a brief review of the foundations and a few generic viability criteria, mainly concerning stability issues and constraints imposed by cosmological data, our discussion will focus upon weak field astrophysics, which turns out to have some surprises in store for us: How do such modifications fare with the Weak Equivalence Principle and classical tests, viz. in our solar system? Might they contribute to the solution of the Dark Matter mystery? What do they imply for gravitational wave phenomenology, perhaps even of observational relevance?

Close
Anne Franzen (Utrecht)

Boundedness of a massless scalar wave on Reissner–Nordström interior backgrounds

We consider solutions of the scalar wave equation ☐g φ = 0, without symmetry, on fixed subextremal Reissner–Nordström backgrounds (M, g). Previously, it has been shown that for φ arising from sufficiently regular data on a two ended Cauchy hypersurface, the solution and its derivatives decay suitably fast on the event horizon H+. Using this, we show here that φ is in fact uniformly bounded, |φ| ≤ C, in the black hole interior up to and including the bifurcate Cauchy horizon CH+.

The proof depends on novel weighted energy estimates in the black hole interior which, in combination with commutation by angular momentum operators and Sobolev embedding, yield uniform pointwise estimates.

Close
Heinrich Päs (Dortmund)

Sterile neutrino altered dispersion relations in particle physics, astrophysics and cosmology

The search for sterile neutrinos is motivated by the LSND and MiniBooNE, reactor and Gallium anomalies. The fact that this evidence is partly conflicting can be a consequence of either experimental systematics or of non-standard neutrino properties such as altered dispersion relations. Altered dispersion relations can arise from various effects such as Lorentz violation, shortcuts in extra dimensions and standard or non-standard matter effects. We analyze the effects of sterile neutrino altered dispersion relations on neutrino oscillations the flavor ratios of astrophysical neutrinos and on big bang nucleosynthesis (BBN).

Close